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Chapter 1

Radiative and collisional excitation
of molecules

The observations of molecular spectral lines are crucial to determine the physical and
chemical conditions of the observed object. Nowadays, the technological advances offer
a high spatial and spectral resolution and sensitivity, with a new spectral window for
millimeter and submillimeter observations where most molecules emit their rotational
transitions. Hundreds of transitions are now being accessible for some species and we
sometimes need detailed radiative transfer modelling code to characterise the physical
and chemical conditions of the object, sometimes with some background and foreground
contamination. We will present in the following the basics for understanding the radiative
transfer modelling (Sec. 1.1), in order to compute the column densities of the observed
species (Sec. 1.2) and their chemical abundances (Sec. 1.3).

1.1 Radiative transfer

1.1.1 Population levels

When considering a multi energy level system of a considered species, we first need to
evaluate the rate of transitions populating a given energy level. Figure 1.1 shows the
example of a 2-level system with an upper level energy Eu and a lower level energy Eℓ.
The Auℓ, Buℓ and Bℓu parameters represent the so-called Einstein coefficients, respectively
describing the spontaneous radiative de-excitation, the stimulated radiative de-excitation
and the radiative excitation. The Cuℓ and Cℓu parameters represent the collisional de-
excitation and excitation respectively (non radiative processes as they are independent
of the photon interaction with the 2-level system). These rates are the collision rates
per second per molecule of the species of interest and they depend on the density of the
collision partner. They can be expressed as:

Cij = γij × ncollider , (1.1)

where ncollider is the density of the collision partner which can be H2, Helium, electrons,
depending on the properties of the observed ISM and participates to the level population.
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The collisional rate coefficients γij (in cm3 s−1) are the velocity-integrated collisional cross
sections, and depend on the kinetic temperature (Tk) through the relative velocity of the
colliding molecules and possibly also through the collisional cross sections directly. The
downward collisional rate coefficients are tabulated in various databases such as LAMDA1

and Basecol2. They represent the Maxwellian average of the collisional cross section (σ),
depending on the collision energy (E), the kinetic temperature (Tk) and the reduced mass
(µ) of the system:

γuℓ =

√
8kTk

πµ

(
1

kTk

)2 ∫
σuℓE exp

(
−E

kTk

)
dE , (1.2)

where k is the Boltzmann constant. The upward and downward rates are related through
the following:

γℓu = γuℓ
gu
gℓ
e−hν/kTk , (1.3)

where gi is the statistical weight of the i level and Tk is the kinetic temperature. The
radiation field is noted in Fig. 1.1 as J̄=

∫∞
0

JνΦ(ν) dν, where Jν is defined as the integral
of the specific intensity Iν over the source of emission and Φ(ν) is the line profile function
(Gaussian, Lorentzian...):

Jν =
1

4π

∫
Iν dΩ . (1.4)

Figure 1.1: Example of a 2-level system with an upper level energy Eu and a lower level
energy Eℓ.

Eu

El

Aul BulJ BluJ Cul Clu

radiative processes non-radiative processes

photon energy
Eu-El=h𝜈=kT

We need to solve the population rate for each level:

dni

dt
= −ni

[∑
k<i

Aik +
∑
k ̸=i

(BikJ̄ + Cik)

]
+
∑
k>i

nkAki +
∑
k ̸=i

nk(BkiJ̄ + Cki) , (1.5)

1https://home.strw.leidenuniv.nl/~moldata/
2https://basecol.vamdc.eu/
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where ni is the population of the energy level i. To solve these equations we need to
know the radiation field which is the amount of radiation inside the source and which we
do not know.

When the energy levels of a molecule are in statistical equilibrium, the rate of transition
populating a given energy level is balanced by the rate of transitions which depopulates
that same energy level and dni

dt
= 0.

We can derive the Einstein coefficients (Auℓ, Buℓ, Bℓu) by considering a 2-level system and
only radiation excitation in Eq. 1.5 with Cℓu = Cuℓ = 0:

nuAuℓ + nuBuℓJ̄ = nℓBℓuJ̄ (1.6)

For a system in thermal equilibrium, the relative level populations follow the Boltzmann
distribution:

nu

nℓ

=
gu
gℓ

exp

(
− hν

kT

)
, (1.7)

where h is the Planck constant, gu and gℓ are the statistical weights of levels up and low
respectively and T is the temperature of the region. In non-LTE (Local Thermodynamic
Equilibrium), T can be replaced by the so-called excitation temperature. Tex is not a real
temperature (such as Tk) and corresponds to the temperature for a Boltzmann population
in system made of these two levels. This definition is broader than the case of thermal
equilibrium and remains valid even if the level population is not at equilibrium. Tex then
depends on levels (ℓ,u).
In thermodynamic equilibrium, the radiation field Jν can be described by the Planck
function Bν(T ):

Bν(T ) =
2hν3

c2
1

exp
(
hν
kT

)
− 1

(erg s−1 cm−2 Hz−1 sr−1) . (1.8)

We can now substitute Eq. 1.7 into Eq. 1.6 to obtain:

J̄ =
Auℓ/Buℓ

NlBℓu

NuBuℓ
− 1

=
Auℓ/Buℓ

gℓBℓu

guBuℓ
exp( hν

kT
)− 1

(1.9)

Comparing Eq. 1.8 with Eq. 1.9 we can now get simplified relationships that allows to
express Eq. 1.5 as a function of Auℓ only:

guBuℓ = gℓBℓu , (1.10)

Auℓ =
2hν3

c2
Buℓ . (1.11)

Note that some authors use the energy blackbody radiation Uν (=Iν(T )×4π/c) instead of
Jν through J̄ in Eq. 1.6. A different expression relating the A and B Einstein coefficients
is then used: Auℓ = Buℓ × 8πhν3/c3. Note however that, in the later definition, only the
B coefficients vary, and A is unchanged from one definition to the other. The Einstein
coefficient Auℓ (which are proportional to ν3) can be found tabulated in the spectroscopic
databases such as CDMS3, JPL4 and NIST5 (see Sec. 3.1).

3https://cdms.astro.uni-koeln.de/
4https://spec.jpl.nasa.gov/
5https://www.nist.gov/pml/observed-interstellar-molecular-microwave-transitions/
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1.1.2 Radiative transfer equation

The intensity of a source emitting in the ISM along a line of sight Iν , will change if the
radiation is absorbed or emitted, and this change can be described by the equation of
transfer :

dIν
ds

= −ανIν + jν , (1.12)

where dIν
ds

represents the change of the intensity Iν at the corresponding frequency ν
through a slab of material of thickness s. It depends on the absorption coefficient αν and
the emissivity jν [see e.g Spitzer, 1978]. The expressions of αν and jν are defined as:

αν =
hν

4π
(nℓBℓu − nuBuℓ)Φ(ν) , (1.13)

=
c2

8πν2

gu
gℓ
nℓAuℓ

(
1− gℓnu

gunℓ

)
Φ(ν) (cm−1) , (1.14)

jν =
hν

4π
AuℓnuΦ(ν) (erg s−1 cm−3 Hz−1 sr−1) . (1.15)

Since we do not know the path of propagation s, it is convenient to define a new variable
called optical depth, or opacity of a line at the frequency ν such as:

dτν = ανds , (1.16)

and define the so-called source function Sν (Kirchhoff’s law of thermal radiation) as:

Sν =
jν
αν

=
nuAul

(nlBlu − nuBul)
. (1.17)

Then we get :

dIν
dτν

= −Iν + Sν , (1.18)

dIν
dτν

eτ + Iνe
τ = Sνe

τ , (1.19)

d

dτν
(Iνe

τ ) = Sνe
τ . (1.20)

We can then integrate this equation between 0 and τν (cf. Fig. 1.2) :∫ τν

0

d

dτν
(Iνe

τ ) dτν =

∫ τν

0

Sνe
τ dτν , (1.21)

Iνe
τ − Iν(0) =

∫ τν

0

Sνe
τ dτ ′ν , (1.22)

Iν = Iν(0)e
−τ +

∫ τν

0

Sν exp[−(τν − τ ′)] dτ ′ , (1.23)

where Iν(0) represents the background radiation, i.e the cosmic microwave background
(CMB) at 2.7 K.
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𝝉’ = 0
I𝜈 =I𝜈(0)

0 L

𝝉’ = 𝜏𝜈
I𝜈 

Tex

Figure 1.2: Passage of a beam through a gaseous object of length L, excitation temper-
ature Tex.

Assuming that the source function does not vary in the observed medium at a constant
temperature (it does not vary as a function of the opacity), we then get :

Iν = Iν(0)e
−τν + Sν(1− e−τν ) . (1.24)

From this equation we can consider two cases depending on the optical depth of the
medium:

• τ ≪ 1, hence Iν = Iν(0), the total emission is equal to the background emission,

• τ ≫ 1 hence Iν = Sν , the total emission is equal to the source function.

In order to compare the intensity of the observed signal with the original intensity of the
emitting source in absence of the intervening ISM (Iν(0)), we get :

Iνobs(s) = Iν(s)− Iν(0) = (Sν(T )− Iν(0))(1− e−τν ) . (1.25)

The Source function is equivalent to the Planck function at the temperature Tex: Sν =
Bν(Tex) (see Eq. 1.8 and Eq. 1.17). Equation 1.25 can then be rewritten as:

Iνobs =
2hν3

c2

[
1

ehν/kTex − 1
− 1

ehν/kTCMB − 1

]
(1− e−τν ) . (1.26)

The radiation Iνobs is defined by the Planck’s function at Tb (Iνobs=Bν(Tb)), the brightness
temperature of the source (in K). In the Rayleigh-Jeans (RJ) limit (namely T0

T
≪ 1 where

T0 = hν/k),

Iν =
2kν2Tb

c2
. (1.27)
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It is the custom in radioastronomy to measure the brightness of a source by its brightness
temperature, Tb. The RJ limit stands for frequencies ν (in GHz) ≪ 20.84 × T (in K), and
it is valid for radio emission except perhaps for the low temperatures (cold cores of about
10 K). When ν is so high that RJ does not stand, Eq. 1.27 can still be used but in this
case but it should be understood that in this case, Tb is different than the thermodynamic
temperature of a blackbody.
The Equation 1.26 can be expressed as :

Tb(v) = T0

(
1

eT0/Tex − 1
− 1

eT0/TCMB − 1

)
(1− e−τ(v)) , (1.28)

where T0 = hν/k. One might apply the filling factor correction η (lying between 0 and
unity) as a multiplicative factor to Eq. 1.26 [see Ulich and Haas, 1976]:

η =
Ωsource

Ωobserved

, (1.29)

where Ω is the solid angle. We assume for single dish observations, that the telescope
beam Full Width Half maximum (FWHM) size is related to the diameter of the telescope
by the diffraction limit:

θb = 1.22
λ

D
, (1.30)

where θb is the angular resolution (radians), λ is the wavelength of light, and D is the
diameter of the telescope. The gaussian beam is frequently used in formula deduction for
single dish. The size of a gaussian beam is characterised by Half Power Beam Width of
the main lobe: θb. The solid angle of such a gaussian beam is:

Ωb =

∫
e
−4×ln(2)×

(
θ2

θ2
b

)
× 2π × θd(θ) =

π

4× ln(2)
× θ2b = 1.133× θ2b . (1.31)

Therefore, the filling factor can be expressed as:

η =
θ2source

θ2source + θ2beam
(1.32)

where θsource and θb are the circular 2D Gaussian sizes of the source (if centered in the
telescope beam) and half-power telescope beam respectively. For example, with a 10′′

source size and a 10′′ telescope beam, we still get a factor 1/2 for the filling factor to
be applied to Eq. 1.28. A non-gaussian intensity distribution requires to work out more
closely the relation between the telescope response (beam) and the source intensity dis-
tribution. Indeed, if not centered, the measured intensity is attenuated with respect to
the intrinsic intensity.

When a background continuum source (Tdust, τdust) is coupled to the molecular/atomic
cloud (Tex, τ) along the line of sight (see Fig. 1.3), the previous equation must take into
account the dust temperature and opacity, as well as the cosmic microwave background
(CMB). In an ON-OFF observation, the resulting brightness temperature obtained from
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Tex, 𝜏 Tb

Tc
Td, 𝜏d Tcmb 

Figure 1.3: Sketch of multiple clouds along the line of sight. The brightness temperature
of the cloud is Tb and the one of the continuum is Tc.

the telescope is :

Tb = Jν(TCMB)e
−τduste−τ + ηdustJν(Tdust)(1− e−τdust)e−τ + ηJν(Tex)(1− e−τ )− Jν(TCMB) ,

(1.33)
where Jν(T ) = (hν/k) × 1/(ehν/kT − 1) is the radiation temperature, ηdust represents
the filling factor for the continuum source and η represents the dilution factor for the
molecular/atomic cloud. In the case where τdust = 0 and η = 1, the equation becomes :

Tb = (Jν(Tex)− Jν(TCMB))(1− e−τ ) . (1.34)

In the case where η=ηdust=1, then:

Tb = (Jν(TCMB)e
−τdust +Jν(Tdust)(1−e−τdust))e−τ +Jν(Tex)(1−e−τ )−Jν(TCMB) . (1.35)

Outside the line, towards the continuum source, the continuum obtained in the ON-OFF
observation is defined by:

Tc = (Jν(TCMB)e
−τdust + Jν(Tdust)(1− e−τdust))− Jν(TCMB) . (1.36)

Combining Eq. 1.35 and 1.36 give a resulting brightness temperature :

Tb = Tc × e−τ + (1− e−τ ) (Jν(Tex)− Jν(TCMB)) . (1.37)

• For emission lines:

Tb − Tc = ∆T = (1− e−τ ) (Jν(Tex)− Jν(TCMB)− Tc) . (1.38)

• For absorption lines:

Tc − Tb = Tabs = (1− e−τ ) (Tc − Jν(Tex) + Jν(TCMB)) . (1.39)
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Several components (spatially distributed, with different VLSR and/or tempera-
ture/density) and molecules can be modelled at the same time. For each molecules,
several transitions can be modelled within the spectrum. The spectra of these compo-
nents are computed separately, and then added iteratively. In the following equations,
the indices i, j and k correspond to components, molecules, and lines, respectively. The
spectrum is computed in a first iteration with the first component:

Tb,0(ν) = Tc(ν)e
−

∑
j,k

τ0,j,k(ν)

+
∑
j

η0,j

(
1− e

−
∑
k
τ0,j,k

)
(Jν(Tex,0,j,k)− Jν(Tbg)) . (1.40)

The other components are then added iteratively in the case of an onion-like structure:

Tb,i=[1,N−1](ν) = Tb,0(ν)e
−

∑
j,k

τi,j,k(ν)

+
∑
j

ηi,j

(
1− e

−
∑
k
τi,j,k

)
(Jν(Tex,i,j,k)− Jν(Tbg)) .

(1.41)
The continuum emission is here assumed to be optically thin (i.e. transparent to the CMB)
and spatially uniform, to fill the beam of the single-dish telescope or the synthesised beam
of the interferometer. In LTE, Tex,i,j,k has the same value within each component (i) for
each transition (k).

1.2 Molecular column densities

In CASSIS, you can provide, in LTE, the column density, excitation temperature, the line
width and the source size and it will compute the filling factor, the opacity and then it
will reconstruct the line profile using for example a Gaussian profile. In non-LTE, you
can provide the column density, the kinetic temperature, the density of the collider, the
line width and the source size and it will compute the filling factor, the opacity and then
it will reconstruct the line profile using for example a Gaussian profile.

1.2.1 Opacity

In order to derive the physical conditions of the observed medium, it is useful to measure
the number of molecules per unit area along the targeted line of sight. This quantity is
called the molecular column density and is the first step before measuring the molecular
abundances (in LTE) or the kinetic temperature, collider density and molecular abun-
dances (in non-LTE). We can express the column density in i level, Ni as a function of
the number of molecules in the energy level i (ni: number per cm−3):

Ni =

∫ L

0

nids , (1.42)

L being the size of the source along the line-of-sight, and ds the infinitesimal element
of length along the line-of-sight. The line opacity can be expressed as a function of the
column density and the excitation temperature, that we assume to be constant on the
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line of sight. For that we can integrate τ along the line profile :∫
τνdν =

∫
hνΦν

4π
(BluNl −BulNu)dν (1.43)

=
Aulc

3Nu

8πν3
(exp(hν/kTex)− 1) , (1.44)

Where Φν is the line profile with
∫
Φ(ν)dν=1. For a gaussian line shape, we can express

the opacity (Eq. 1.16) as a function of the cloud’s depth :

τul(z) =
Aulc

2

8πν3
ul∆v

√
π/2

√
ln 2

∫ z

0

nu

(
nlgu
nugl

− 1

)
dz′ , (1.45)

where ∆v (velocity units) is the full width at half maximum of the observed line. Inte-
grating on the line of sight (see equation 1.42), we get, at the line center :

τ0 =
gu
gl

c2

8πν2∆ν
√
π/2

√
ln 2

AulNl

(
1− e−hν/kTex

)
, (1.46)

where ∆ν (frequency units) is the FWHM of the observed line, and Nl is the column
density in the lower state.
This equation can also be expressed as:

τ0 =
c2AulNu

8πν2∆ν
√
π/2

√
ln 2

(
ehν/kTex − 1

)
. (1.47)

The next step is now to estimate the total column density of the observed molecular
species, not just the column density in an energy level. Statistical mechanics states
that, when the gas exchange energy with the ambient medium, the partition fonction Q
describes the relative population of states in the gas as:

Q(T ) =
∑
i

gi exp

(
− Ei

kT

)
. (1.48)

The partition function is a function of the nuclear spin, rotational, vibrational, electronic
states of the molecule: Q = QnQrQvQe (see Gordy and Cook [1984] and Mangum and
Shirley [2015]).
The total column density Ntot can then be computed as a sum on all levels:

Ntot =
∞∑
n=0

Ni . (1.49)

Using equation 1.48 we can now express the total column density:

Ntot =
NlowestQ(Tex)

glowest

=
NuQ(Tex)e

Eu/kTex

gu
, (1.50)

where Q(Tex) is the partition function for an excitation temperature Tex and the index
lowest represents the lowest level associated to the molecule and its form (ortho, para, A,
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E: see 3.2). Indeed, in the case of the water molecule, the lowest energy level for the para
form is 0 K and 34.23 K for ortho. Eu is the upper level of the transition compared to
the ground level (different from zero when ortho, para or meta forms).
Combining Eq. 1.47 and Eq. 1.50, we finally obtain:

Ntot =
Q(Tex)e

Eu/kTex

gu
×

τ08π

(
√
π

2
√

ln(2)

)
ν2∆ν

c2Aul(ehν/kTex − 1)
(1.51)

where τ0 is the opacity at the line centre, derived from the maximum intensity at the line
peak emission (see Eq. 1.28).
When the collision rate between molecules is high, Tex → Tb → TK . By choosing a
column density such that τ ≫ 1 at the line center, the line will therefore saturate, the
temperature at the line center will become constant, and will result in a non-negligible
line broadening (see Eq. 1.28).
Figure 1.4 presents the modelled line profiles of the 12CO molecule for transitions 1 → 0
and 2 → 1 at Tex = 20 K, FWHM = 1 km s−1, τ = 10 and τ = 0.5 at the line center.
We assume a gaussian profile:

τ(v) = τ0 exp

(
−(v − v0)2

2σ2

)
, (1.52)

where v0 is the velocity in the local standard of rest (VLSR), σ(km/s) = ∆v
(km/s)/(2

√
2 ln 2), where ∆v is the FWHM. Using Eq. 1.28 we get Tb = 16.5 K for

the 1 → 0 transition and Tb = 14.8 K for the 2 → 1 transition. Note that in LTE, Tex =
Tk, then in the RJ limit with τ ≫ 1, Tb ≈ Tk - TCMB. Therefore Tb measured at the peak
(Fig. 1.4) gives a direct measure of Tk. In this case, at 115 GHz, hν/kT ≪ 1, but not at
230 GHz, and Tex = Tk=16.7+2.73 ≈ 20 K, which is consistent with the value given as an
input for the model. We can see that for low opacity the profile follows a Gaussian profile,
and increasing the opacity tends to saturate the line profile, deviating from a Gaussian
one.

In the LTE regime, proper estimation of Tex requires the observation of multiple tran-
sitions (many upper energy levels covering at least the temperature range of the observed
source) coupled with modelling of the statistical equilibrium and radiative transfer. The
gas excitation temperature varies between the background radiation temperature (TCMB

when no background is present) at low density and the gas kinetic temperature at high
density. At low densities, collisions are not the dominant excitation mechanisms and Tex

is in equilibrium with the radiation temperature. It can be demonstrated from Eq. 1.6,
combined with Eq. 1.7 and Eq. 1.8 with Bν(TCMB). At high densities, collisions dom-
inate in setting the level population and Tex is equal to the gas kinetic temperature of
the dominant collisional partner. It can be demonstrated from Eq. 1.5, neglecting the
radiative terms:

nu(Auℓ +BuℓJ̄ + Cuℓ) = nℓ(BℓuJ̄ + Cℓu) . (1.53)

Therefore,
nuCuℓ = nℓCℓu . (1.54)

12



Figure 1.4: Line profiles for the 12CO transitions 1 → 0 and 2 → 1 at Tex = 20 K, ∆v
= 1 km s−1 and the opacity τ = 0.5 (plain lines) and 10 (dot-dashed lines) at the line
centre using CASSIS.

Using Eq. 1.3 and 1.7, the excitation temperature tends to reach the kinetic temperature
and the transition is thermalised (i.e LTE). We say that the line is sub-thermally
excited when Tex is less than Tk. Note that some transitions of the same molecule
can be thermalised (for example the CO 1–0 transition) while higher energy levels are
sub-thermally excited.

We can now introduce a new parameter, called the critical density (ncr), which has
traditionally been used as a measure of the density at which a particular transition is
excited and is observed at radio wavelengths. The definition of the critical density is
unfortunately not consistent throughout the literature. Some definitions only consider
the two energy levels involved in the transition (2-level approximation):

ncr(uℓ) =
Auℓ

γuℓ
, (1.55)

where γuℓ depends on the kinetic temperature. It defines the density of the gas required
for the collisions to dominate over the radiative processes. Other definitions use the
multi-level nature of collisions to sum over all collisions out of the upper energy level or
only from the upper energy level to lower energy levels [see for example Shirley, 2015].
From Eq. 1.55, the critical density is defined for each transition and is proportional to
ν3, so the higher the upper energy is, the higher the frequency, therefore the Einstein
coefficient and the critical density. As an example, using the LAMDA catalog, the critical
density of HC3N J = 9–8 at 81.88 GHz is ncr = [2.8− 7.0]× 105 cm−3 (Eu = 19.6 K, A9−8
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= 4.2 × 10−5 s−1, γ9−8 (10 - 300 K)=[5.97 × 10−11 – 1.51 × 10−10] cm3 s−1). At 336.52
GHz, the critical density of HC3N J = 37–36 is ncr = [8.4− 27.7]× 106 cm−3 (Eu = 306.9
K, A37−36 = 3.05 × 10−3 s−1, γ37−36 (10 - 300 K)=[1.11 × 10−10 – 3.62 × 10−10] cm3 s−1).
Therefore, the higher-frequency transitions are more readily sub-thermally excited. In
contrast, the CO 1–0 and 2–1 transitions have much lower critical densities but are easily
observed from the ground and detected (high Einstein coefficients) in the ISM, as the
second most abundant molecule. These CO transitions are therefore good tracers of
molecular gas in our Galaxy and beyond [see e.g. Liszt and Lucas, 1998, Dame et al.,
2001, Goldsmith et al., 2008]. However it should be noted that the use of CO has some
caveats: 1) the low-J CO lines become easily optically thick (the 1–0 transition becomes
optically thick beyond 1016 cm−2, which corresponds to a few visual extinction [Liszt and
Lucas, 1998] so that they cannot directly probe the highest density regions; 2) at low
column densities, CO is rapidly photodissociated by the interstellar radiation field [van
Dishoeck and Black, 1988]. That is why there have been a lot of effort to detect higher
density tracers such as HCO+, N2H

+, HCN, HC3N, NH3, although with much weaker
line intensities compared to CO or even CS. Note that the high-J CO lines detected in
the submm/infrared may be optically thin.

Going back to the Fig. 1.4 line profiles, several mechanisms can broaden spectral lines.
The dynamical structure of the source, if unresolved, may contribute to such broach lines
such as outflows, collapsing envelopes, stellar winds, etc...Also, individual atoms in a
gaseous medium are in random, chaotic motion: the hotter the gas, the faster the random
thermal motions of the atoms. When a photon is emitted by an atom in motion, the
frequency of the detected photon is changed by the Doppler effect. The photon is then
not recorded at the precise frequency predicted by atomic physics but rather at a slightly
shifted. Throughout the whole cloud, atoms move in every possible direction, resulting
in a broadening of the line. From Fuller and Myers [1992] :

(∆v)2 = 8 ln(2)
kT

m
, (1.56)

where ∆v is the FWHM, T is temperature in the gas, and m is the mass of the atom
(or molecule). For example, in the case of the D2H

+ molecule, at a temperature of 8 K,
the thermal linewidth should be 0.27 km s−1. Note that turbulence can also result in the
broadening of a spectral line.

By defining a column density and an excitation temperature, we get from 1.43
∫
τdv.

Then, using a linewidth (before broadening due to optical depth), we get τ(v) (as a
function of velocity), which has a Gaussian profile (Eq. 1.52). Then from 1.28 we get Tb

as a function of velocity. Different line profiles can therefore be used.

1.2.2 LTE Rotational diagram analysis

This analysis refers to a plot of the column density per statistical weight of a number
of molecular energy levels, as a function of their energy above the ground state (see
Goldsmith and Langer [1999]). In LTE, this corresponds to a Boltzmann distribution, so
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a plot of the natural logarithm of Nu/gu versus Eu/k yields a straight line with a slope
of -1/Trot. The temperature inferred is called the rotation temperature.
We can rewrite Eq. 1.47 as:

τ =
c3AulNu

8πν3∆v
√
π/2

√
ln 2

[ehν/kTrot − 1] . (1.57)

Neglecting Jν(TCMB) from Eq. 1.28 compared to Jν(Trot), which means TCMB ≪ Trot, we
can express the main beam temperature as:

Tb =
hν

k

1

exp(hν/kTrot)− 1

1− e−τ

τ
× τ . (1.58)

Therefore, we can compute the column density in the upper state as:

Nu =

∫
Tbdv ×

8πkν2

hc3Auℓ

× τ

1− e−τ
. (1.59)

Nu = W × 8πkν2

hc3Auℓ

× Cτ , (1.60)

where W in the integrated area and Cτ is the optical depth correction factor. When the
line is optically thin, Cτ is equal to unity.
For a molecule in LTE, all excitation temperatures are the same, and the population of
each level is given by:

Nu =
Ntot

Q(Trot)
gue

−Eu/kTrot . (1.61)

We can rewrite this equation to obtain:

ln
Nu

gu
= ln

Ntot

Q(Trot)
− Eu

kTrot

. (1.62)

A rotational diagram can be useful to determine whether the emission is optically
thick or thin, whether the level populations are described by LTE, and to determine what
temperature describe the population distribution in the event that LTE applies. Equation
1.62 can be written in terms of the observed integrated area W (K km s−1):

ln
8πkν2W

hc3Auℓgu
= ln

Ntot

Q(Trot)
− lnCτ −

Eu

kTrot

. (1.63)

If we do not take into account the Cτ factor, each of the upper level populations would
be underestimated by a factor Cτ , different for each transition. Therefore, the ordinate of
the rotation diagram would be below its correct value by the factor lnCτ . A change in the
temperature for lines of different excitation might indicate that the source has different
temperature components or that the lines considered are not optically thin and cannot
be easily used to obtain a meaningful excitation temperature.
Note that the error bars should be taken into account for the order 1 polynomial fit, in
order to obtain a reliable value for the uncertainty on the rotational temperature as well
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as the total column density. The uncertainty of the integrated area is computed though
the following formula:

∆W =

√
(cal/100×W )2 + (rms

√
2× FWHM × δv)2 , (1.64)

where cal is the instrumental calibration uncertainty (%), W is the integrated area (in
K km s−1), rms is the noise around the selected species (in K), FWHM is expressed in
km s−1 and δv is the bin size (in km s−1). We assumed that the number of channels in
the line is 2×FWHM/δv For undetected transitions we estimated the upper limit of 3σ:

W (K km s−1) ≤ 3(rms× FWHM)×
√

(2× α)2 + (2× δV/FWHM) . (1.65)

Therefore, the plotted uncertainties are simply:

∆

(
ln

Nu

gu

)
=

∆W

W
. (1.66)

Now, how do we estimate the uncertainty on the values of Trot and Ntot?
From the fitted straight line (y = ax+b) the slope a is related to the rotational excitation
temperature as Trot = -1/a. Then ∆Trot = ∆a/a2. The intercept b is related to the total
column density as Ntot = Q(rot) × eb. Therefore ∆Ntot = Q(rot)×∆b× eb.

We can iteratively apply the Cτ correction to the rotational diagram analysis until a
solution for Trot and Ntot has converged (when the last result has not changed by a small
value). For the first iteration we use Equation 1.62 and obtain values for the transitions
opacity. In the second iteration we add the Cτ correction to the linear equation:

ln
Nu

gu
= ln

Ntot

Q(Trot)
− Eu

kTrot

− lnCτ . (1.67)

The iterations go on until a convergence has been obtained.
As Goldsmith and Langer (1999) nicely said, this method requires quite a large number
of transitions spread over a range of upper state energies.
Please note that between Eq. 1.57 and Eq. 1.58, Jν(TCMB) has been neglected from Eq.
1.28 compared to Jν(Trot). Therefore the above analysis does not stand when TCMB is
not negligible compared to Trot.

CASSIS provides the values for the column density, excitation temperature and
the corresponding errors, reduced χ2 and the probability of occurrence (P value) for
a χ2 value depending on degrees of freedom. The degree of freedom in our linear fit
corresponds to the number on points (n) on which the fit was performed minus 2 (2
values extracted from the fit: N and Tex).
The method of least squares states that the best values are those for which S is minimized:

S =
n∑

i=1

(yi − y)2

σ2
=

n∑
i=1

(yi − axi − b)2

σ2
i

(1.68)
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Ideally S is expected to follow a chi-square distribution with its mean value equal to the
degrees of freedom (dof). We thus expect S to be close to dof = n - 2 if the fit is good.
A quick and easy test is to form the reduced chi-square χ2/dof which should be close
to 1 for a good fit. A more rigorous test is to look at the probability of obtaining a χ2

value greater than S, i.e., P(χ2 ≥ S). This requires integrating the χ2 distribution or using
cumulative distribution tables. In general, if P(χ2 ≥ S) is greater than 5%, the fit can
be accepted. This probability is just a tool for deciding whether to reject or validate the
fit as frequentist statistics does not, and cannot, attach probabilities to hypotheses. An
important point to consider is when S is very small. This implies that the points are not
fluctuating enough. Beyond falsified data, the most likely cause is an overestimation of
the errors on the data points. Indeed, the error bars represent a 1 σ deviation, so that
about 1/3 of the data points should be expected to fall outside the fit. If the errors have
been under-estimated then an improbably high value of χ2 can be obtained.

CASSIS provides the reduced χ2 and the probability P(χ2 ≥ S). Values of the χ2 or
reduced χ2 corresponding to the probability P(χ2; dof=2) of exceeding χ2 can be found
in the literature [e.g. Bevington and Robinson, 2003]. Since the true probability of the
data being consistent with the model depends on both χ2 and dof, we decided to provide
the reduced χ2 and the probability so that the user decides on the goodness of its fit. For
example, if we obtain a value of χ2 = 1.95 for 7 degrees of freedom, the corresponding
probability is about 96%. Although this probability may seem to be gratifyingly high,
the very low value of χ2 gives a strong indication that the common uncertainty in the
data may have been overestimated.

If you plan on performing a population diagram analysis on 2 points only, CASSIS will
evidently not be able to provide the errors on the column density and excitation temper-
ature nor the χ2 and probability values. Two points can always be fitted by a straight line.

Note that CASSIS can perform the rotational diagram analysis assuming optically
thin lines for multiplet transitions (∼ same frequency, ∼ same upper energy), but
not on blended transitions (∼ same frequency, different upper energy). However the
opacity correction cannot be performed on both for the moment. After using the
Rotational Diagram module within CASSIS, I suggest that you use the column density
and excitation temperature values in the Line Analysis module in order to compare the
synthetic spectrum with your observations. Note that CASSIS provides a python
script with many options that will produce a publishable figure such as Fig.
1.5. It uses the output of the fit performed in the Rotational Diagram module, under the
Save tab: Save displayed values and Save fit values.

1.2.3 Non-LTE formalism

When the LTE conditions are not fulfilled, the Cuℓ and Cℓu collisional coefficients cannot
be neglected and Eq. 1.5 must be solved. Some simplifications must be done. The
problem is how to decouple the radiative transfer calculations from the calculations of
the level populations. A popular approach for this is the so-called escape probability
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Figure 1.5: Rotational diagram analysis using CASSIS and its python script for the CO
detected transitions using Herschel/HIFI towards the Orion Bar. The opacity correction
has been applied. The CO column density and rotational temperature are quoted in the
upper right corner. No beam dilution has been taken into account.

method (described by Sobolev [1960]). A factor (β) that determines the probability
that a photon at some position in the cloud can escape the system is introduced in the
equations 1.5: J̄ν = Sν(1−β). Indeed, locally, the number of photons used for absorptions
((nℓBℓu − nuBuℓ)J̄) is equal to the number of photons available for local absorption and
therefore not escaping the cloud (nu(1 − β(τuℓ))Auℓ). Now the statistical equilibrium
equations can take a much easier form:

dnu

dt
= nℓCℓu − nuCuℓ − βnuAuℓ . (1.69)

So now we can solve the level populations and the radiation field separately as they are
now decoupled. We can then estimate the escape probability value.

A first expression of β has been derived for an expanding spherical sphere by Sobolev
[1960] and also applies to moderate velocity gradients. It is called the Large Velocity
Gradient (LVG) approximation (also called Sobolev) in which Castor [1970] and Elitzur
[1992] (Chapter 2) derived:

β =
1− e−τ

τ
. (1.70)

For a uniform sphere, Osterbrock and Ferland [2006] derived:

β =
1.5

τ

[
1− 2

τ 2
−
(
2

τ
+

2

τ 2

)
e−τ

]
. (1.71)
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For a homogeneous slab geometry, also applicable to shocks, de Jong et al. [1975] derived:

β =
1− e−3τ

3τ
. (1.72)

When the gas becomes optically thick (τ ≫ 1), the probability for a photon to escape
the medium is considerably reduced, because of the trapping of emitted photons. In
this case, the effective rate of spontaneous emission has to be reduced by the number of
photons leaving the system: Aeff

uℓ = Auℓβ(τ). Hence the critical density is now described
by:

neff
cr (uℓ) =

Auℓβ(τ)

γuℓ
. (1.73)

This situation leads to more easily thermalised molecular levels since the ncr leading to
thermalisation is reduced (β(τ) < 1). The resolution of the LVG method is quite similar
to the LTE method except that the term Aul is replaced by Aulβ(τ) and the term J̄ν is
replaced by Sν(1− β) in the equations. We can write:

nℓncolliderγℓu = nu(ncolliderγuℓ + βAuℓ) . (1.74)

Combined with Eq. 1.3 we obtain:

nu

nℓ

=
gu
gℓ

e−hν0/kTk

βAuℓ

ncolliderγuℓ
+ 1

=
gu
gℓ

e−hν0/kTk

neff
cr

ncollider
+ 1

. (1.75)

Taking into account the Boltzmann equation (Eq. 1.7) we obtain:

Tex =
Tk

1 + kTk

hν0
ln
(

neff
cr

ncollider
+ 1

) . (1.76)

If n ≫ neff
cr , hence Tex=Tk and the line is thermalised (LTE case).

Equation 1.69 can then be solved for each level assuming equilibrium, computing Tex

for each level (Eq. 1.76), then the opacity (Eq. 1.47) then the integrated line intensity
(from Eq. 1.28). As a first guess, we consider the level populations in the optically
thin case and we solve ni. Then we compute τ and then β, which we re-inject into the
equilibrium equations to solve ni (and therefore Ni) and Tex for each transition. We
can then iterate the procedure and stop when the values do not change. The unknown
parameters are therefore the kinetic temperature of the medium, the number density of
the collider, the column density of the molecular species and the width of the transitions
(assumed to be same for all the transitions of the same species). These can be constrained
when a few transitions of the same species have been detected. Large modelling grids
can be computed and a χ2 minimisation can be used to match the integrated intensities
of the observed transitions:

χ2 =
N∑
i=1

(W obs
i −Wmod

i )2

(cal/100×W obs
i )2 + (rms

√
2× fwhm× δv)2

(1.77)
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where N is the number of observed lines, W obs
i is the observed integrated line intensity,

Wmod
i is the modelled integrated line intensity such as provided with RADEX (see Chap.

2), cal is the instrumental calibration uncertainty (%), rms is the noise around the selected
transitions (in K), FWHM is expressed in km s−1 and δv is the bin size (in km s−1).

1.3 Abundances

Molecules can be used as probes of the physical (kinetic temperature and H2 density
as well as motions such as collapse or rotation) and chemical (abundances) information
on the gas. In order to properly determine the abundances of the detected species, it is
mandatory to determine the H2 column density. In molecular clouds, H2 produced on the
dust grain surfaces and ejected in the gas-phase cannot be directly traced. Indeed, it is a
homonuclear linear molecule with no permanent dipole moment, and all of the low-lying
energy levels are quadrupole transitions with small transition probabilities (Aul values)
and relatively high excitation energies. These transitions are therefore only excited at
high temperatures or in strong UV radiation fields (i.e., fluorescence). The generally
high energies of the first excited states of H2 mean that we expect negligible H2 emission
unless we are looking at unusually warm (500–1000K) gas in proximity to hot stars or in
regions of active star formation. Consequently the most abundant molecule in the ISM,
carrying most of the mass and playing a key role for the thermal balance and gas-phase
chemistry of the ISM, is virtually invisible to direct observation. In this section, we
review the methodology leading to the determination of the abundances of the observed
molecular species.

1.3.1 H2 column density from CO observations

Cold molecular clouds are primarily traced by the second most abundant molecule, CO,
which is asymmetric. The first rotational lines are the most commonly observed transi-
tions at 115, 230 and 345 GHz, with the first lying only ∼ 5 K above ground, a relatively
low effective density (∼102−3 cm−3) and a wavelength (3 mm) which is readily observable
from the ground. It has therefore historically been one of the most commonly used tracers
of physical conditions in the molecular ISM. A CO-to-H2 conversion factor (also called
the X factor) can be established based on the 115 GHz line intensity (Tmb(CO)):

N(H2) ∼ X(CO)× Tmb(CO) (1.78)

In the galactic molecular clouds X(CO) ∼ 2 × 1020 cm−2 (K.km/s)−1, but this value
is dependent on the metallicity [Wilson, 1995, Boselli et al., 2002, Bolatto et al., 2013]
with a factor of 2–20 lower towards starburst galaxies [Downes and Solomon, 2003]. The
exact value of the conversion factor between CO integrated line intensity and mass, X, is
however a matter of some dispute.
An alternative estimate of N(H2) using 13CO (or even C18O) emission requires several
steps and assumptions. One can assume optically thin 13CO emission or derive the 13CO
opacity (τ13), using the Tmb (12CO) which is optically thick, as a measure of the 13CO
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excitation temperature (see Sec. 1.2.1 and discussion of Fig. 1.4) and then correct the
optically thin column density value by the factor τ13(V)dV/[1− exp(τ13(V))]dV. We can
rewrite Eq. 1.26 into:

τν = − ln

[
1− Tmb

Jν(Tex)− Jν(TCMB)

]
(1.79)

and insert this equation in Eq. 1.50. In the case of optically thin line (cf Eq. 1.28):

Tb(v) = [Jν(Tex)− Jν(TCMB)]× τ(v) . (1.80)

Then:
Ntot = N thin

tot × τ

1− exp(−τ)
(1.81)

where the fraction corresponds to the optical depth correction factor (see Sec. 1.2.2).
Note that a constant Tex is assumed to estimate the fractional population in all J levels

of 13CO. In the low-density regime of molecular clouds, the J = 1–0 Tex of 13CO is often
smaller than the value determined from 12CO. By adopting the excitation temperature of
12CO, the resultant 13CO column density is therefore underestimated. Finally, to derive
the H2 column density, an isotopic ratio of 12CO/13CO and H2/

12CO abundance ratio
are assumed. Based on H2 and CO IR absorption lines, the H2/CO abundance ratio
ranges from 4,000 to 7,000 [Lacy et al., 1994, Kulesa, 2002]. However, both isotopic and
CO abundance ratios can vary within clouds and from cloud to cloud owing to isotopic
fractionation and local UV fields. For example, at the center of dense cores, the [CO]/][H2]
ratio is expected to be reduced by up to five orders of magnitude [Bergin and Langer,
1997]. This so-called depletion is dependent on the the temperature, the density and the
timescale. Other tools must therefore be used for the determination of H2 in the cold and
dense regions of the ISM.

1.3.2 H2 column density from dust measurements

Dust grains are made up of metals such as carbon and silicon (with a mass fraction in
metals is 1%), so a (more or less) constant gas-to-dust ratio is expected in the ISM. The
observations of the dust column density are therefore often used to estimate the total
H2 column density in the gas phase. At millimetric wavelengths, in the Rayleigh-Jeans
domain, dust emission depends linearly on temperature, and its great advantage is its
optical thinness.
The observed flux density Fν (Jy beam−1) is approximated with a modified black body
curve. For optically thin emission:

Fν = Bν(Tdust)(1− e−τ ) = Bν(Tdust)× τν (1.82)

In the (sub)millimetre regime (emission of cold dust), the dust emission is rarely opti-
cally thick, except possibly at high resolution or towards high-mass star forming regions.
Having Fν we can deduce τ . The dust opacity is defined as:

τ(ν) = ρdust × κ(ν)× L (1.83)
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where ρdust is the mass density (g cm−3), κ(ν) is the mass absorption coefficient in cm2 g−1,
L the thickness of structure along the line-of-sight. The so-called dust opacity, κ(ν), which
expresses the effective surface area for extinction per unit mass, depends on the chemical
composition and structure of dust grains, but not the size for particles. However, κ will
be modified in the dense regions of the ISM, with an increase by a factor of 2–3, leading
to a higher uncertainty of the mass and abundances determinations [Juvela et al., 2015].
The dust opacity is usually described as a power law κ(ν) = κ0(ν/ν0)

β [Hildebrand, 1983,
Compiègne et al., 2011], where κ0 is the emission cross-section at a reference frequency
ν0. The fit is possible when observations consist of at least three wavelengths covering
frequencies before and after the maximum value of the intensity. For example, for cold
cores, observations at long wavelengths (beyond 200 µm) are needed to constrain the
spectral index, while shorter wavelengths are better for determining colour temperature.
For isothermal clouds in the millimeter wavelength range, the spectral index value can be
derived using the ratio of the surface brightness at for example 1.2 and 3 mm:

β =
log(I1.2mm/I3mm)− log(B1.2mm(Tdust)/B3mm(Tdust))

log(ν1.2mm/ν3mm)
(1.84)

So the fit of the modified blackbody involves three free parameters: the spectral index
(β), the colour temperature (T), the intensity (I0) at a reference frequency ν0 and Bν is
the Planck function.

We are interested in the H2 column density:

N(H2) =

∫
nH2ds =

∫
Nb(H2)

V olume
ds =

∫
Mass

V olume× µ(H2)mH

ds

=

∫
ρgas

µ(H2)mH

ds =
τ(ν)

µ(H2)mHκ(ν)
(1.85)

where mH is the hydrogen atom mass, Nb(H2) is the number of H2 molecules, µ(H2)
is the total mass (Mass) relative to the H2 molecule (Nb(H2)×mH = Nb(H)/2×mH as
Nb(H) = 2Nb(H2) in the cold regions of the ISM). As hydrogen represents 71% of the
total mass of metals in the ISM we can approximate µ(H2) as 2.8 (2M(H)/0.71/M(H)).
Note that in the above equation, an assumption on the dust opacity has been made, as
the gas-to-dust mass ratio of 0.1 in our Galaxy [Beckwith et al., 1990], has been taken
into account:

κ(ν) = 0.1(ν/1000GHz)β , (1.86)

assuming a value for the spectral index β (for example, 1.8 is appropriate for dense regions
[Juvela et al., 2015]).
In conclusion, when you measure a flux density at frequency ν you can deduce τ from Eq.
1.82. You can now determine the H2 column density using Eq. 1.85, after computing β
(Eq. 1.84) or assuming a value, to determine κν (Eq. 1.86). The beam averaged column
density can be expressed as:

N(H2) =
F (ν)

Ωµ(H2)mHκ(ν)Bν(Tdust)
(1.87)
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Ω being the beam solid angle. We can then express the above equation in useful units:

N(H2) = 2.02×1020(cm−2)
(
e1.439/[λ(mm)(T/10K)] − 1

)
(λ(mm))3

(
0.1

κν(cm2 g−1)

)(
10

θb(′′)

)2

(
F (ν)(mJy beam−1)

)
(1.88)

1.3.3 Comparison with chemical models

Modellings and simulations of the chemistry, in which the abundances are calculated based
on the rates of their formation and destruction, can now be compared to the observations.
Since the calculated abundances are function of time as well as the initial conditions of the
modelled source, the modelling can provide information about the history of the source.
A lot of efforts have been made during the past 10 years to feed the chemical databases
based on the astronomical discoveries, but it should be emphasised that models are still
imperfects as our knowledge must be improved based on laboratory work and theoretical
calculations.
To easily compare the abundances as a function of time, derived from the chemical models,
with the observations, we first need to calculate the column density of the modelled
molecular species along the radius of the core. We therefore must convert the modelled
abundance [X] (with respect to H) of a species X into column densities N(X). The most
simple example for a typical prestellar core with a 1D symmetry gives, for a beam smaller
than the core:

N(X) = 2 ×
n∑

i=2

(
n(H)i[X]i + n(H)i−1[X]i−1

2

)
× (Ri−1 −Ri) (1.89)

where R is the radius from the centre and i the position in the grid along the line of sight
(i = 1 being the outermost position) composed of n shells. n(H)i is the gas density at
radial point i, [X]i the abundance of the species. Different column densities are derived
depending on the observed position towards the core. The different column densities
obtained using Eq. (1.89) must then be convolved with the beam size of the telescope
used at the frequency of the observations. The H2 column density can also be derived
using the same method if the density profile of the source is known.
We therefore obtain, from the chemical models, a variation in time of the column density
that can be compared with the observed column density to constrain the age using as
many species as possible. For that, in order to find the best-fit model, we can use the
distance of disagreement computation, applied on the column density, which is computed
as follows:

D(t) =
1

nobs

∑
i

|log(N(X))obs,i − log(N(X))i(t)| (1.90)

where N(X)obs,i is the observed column density, N(X)i(t) is the modelled column density
at a specific age and nobs is the total number of observed species considered in this compu-
tation. The distances can be compared with many models with different initial conditions
(atomic abundances, temperature, density, etc...) to obtain the lowest value and therefore
the best-fit age and initial conditions. Fig. 1.6 shows an example of the radial distribution
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Figure 1.6: Results from a chemical model using the KIDA (https:
//kida.astrochem-tools.org/) database and the NAUTILUS (https://kida.
astrochem-tools.org/codes.html) chemical code.

of the modelled CH3SH for an age between 106 et 3 × 106 years already constrained using
many species (gray vertical area), for different models (red: non-sulphur depletion and
blue: sulphur depletion in the initial atomic abundances) for the prestellar core L1544.
The dashed line correspond to the column density computed by Vastel et al. [2018].
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Chapter 2

Use of a non-LTE radiative transfer
code within CASSIS

2.1 RADEX

You can also use a non-LTE radiative transfer code within the CASSIS software. RADEX
is a statistical equilibrium radiative transfer code and is made available for public use as
part of the Leiden Atomic and Molecular Database (LAMDA). it is a one-dimensional
non-LTE radiative transfer code, that uses the escape probability formulation assuming
an isothermal and homogeneous medium without large-scale velocity fields. RADEX is
comparable to the LVG method and provides a useful tool in rapidly analyzing a large set
of observational data providing constraints on physical conditions, such as density and
kinetic temperature.
If you plan to use RADEX within CASSIS, you have first to download, install and check
RADEX :

• Download RADEX from the official RADEX website

• Install and check RADEX as stated on the RADEX website

• When your RADEX install is working, copy the whole RADEX directory into your
current CASSIS directory. This is mandatory because CASSIS will change some files
of RADEX, making it unusable outside CASSIS. Do not run RADEX standalone
from the RADEX directory in CASSIS, run it from your original install directory.
Note that the collisional files in the RADEX/Data directory are not used, as used
with RADEX standalone. CASSIS will use the collisional files in its database/lamda
directory.

The input parameters are: the kinetic temperature, the density of the collision partner
(H2, p-H2, o-H2, electrons, H (atoms), He, and H+), the molecular column density, the
line width and the temperature of background radiation (2.73 K by default). RADEX
computes the opacity of the line, the excitation temperature (K), the peak intensity (K)
and the line flux (K.km/s) which is simply calculated as the integral of the Gausssian:∫
TRdv = TR × FWHM ×

√
2π

2
√

2ln(2)
where FWHM is the Full Width at Half Maximum
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(km/s).
The integrated profile is useful for estimating the total amount of emission in the line,
although it has limited meaning for optically thick lines since the changing optical depth
over the profile is not taken into account. Using the RADEX code as a standalone
version, the entire radiative transfer is performed with rectangular line shapes.
Here is an example of the output from RADEX standalone on the HCO+ molecule:
* Radex version : 30nov2011
* Geometry : Uniform sphere
* Molecular data file : /Users/vastel/CODES/Radex/data/hco+.dat
* T(kin) [K]: 100.000
* Density of H2 [cm-3]: 1.000E+11
* T(background) [K]: 2.730
* Column density [cm-2]: 3.000E+14
* Line width [km/s]: 1.000
Calculation finished in 10 iterations
Line Eup Freq(GHz) Tex(K) τ TR(K) Flux(K.km/s)
2-1 12.8 178.3748 100.0 1.814E+00 7.985E+01 8.500E+01
3-2 25.7 267.5573 100.0 3.670E+00 9.122E+01 9.710E+01
4-3 42.8 356.7338 100.0 5.618E+00 9.132E+01 9.721E+01
5-4 64.2 445.9024 100.0 7.245E+00 8.961E+01 9.539E+01

CASSIS uses the opacity and excitation temperature from the output file, to recon-
struct the line profile using equation 1.37 and the equation of a Gaussian line profile.
For optically thick lines, CASSIS will broaden the line profile although RADEX keeps a
constant FWHM. Linewidths may be different from one line to another due to the opacity
effect, therefore one computation for one unique FWHM cannot be done.
For example, Fig. 2.1 shows a synthetic spectrum of the 5-4 transition of HCO+ (black
line=LTE model with 8 K noise) for the above parameters (N=3 × 1014cm−2, FWHM=
1 km/s, Tex=100 K). We perform the RADEX modelling (red line) using a high density
so that we reach LTE (nH2 = 1011 cm−3), with Tk = 100 K. Using a 1km/s line width,
the integrated flux intensity from RADEX should be 95.39 K.km/s (see table above), well
below the observed flux of ∼ 1.8 (km/s) × 89.6 (K)= 161.3 K.km/s, where 1.8 km/s
represents the line width of the observed line (after broadening due to the opacity effect).
Using a 1.8 km/s line width in the standalone RADEX version gives:
Line Eup Freq(GHz) Tex(K) τ TR(K) Flux(K.km/s)
5– 4 64.2 445.9024 100.0 4.025E+00 8.807E+01 1.688E+02
with a line flux of 168.8 K.km/s compatible with the modelled flux from CASSIS.

2.2 The collision database

The aim of this database is to provide the community an up-to-date database on the
collisional coefficients to be used with the RADEX radiative transfer modelling. These
files are mandatory for the non-LTE modelling within CASSIS. To date there are three
updated collision databases:
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Figure 2.1: Modeled HCO+ 5-4 transition in LTE (black) and with RADEX (red) using
CASSIS.

• the LAMDA database maintained by F. van der Tak at the Leiden University
(Netherlands),

• the Basecol database maintained by M.-L. Dubernet at the Paris observatory
(France),

• the EMAA database maintained at IPAG.

The LAMDA and EMAA database has the advantage to provide collision files directly
used with the RADEX tool. The Basecol database does not generate files directly used
with this tool. RADEX is implemented within the CASSIS software and CASSIS needs
to address the quantum numbers associated with the molecular/atomic transitions to
perform line identification and generate synthetic spectra for example.

The collision database provided by CASSIS gathers the most up-to-date collision
files provided by LAMDA, BASECOL, and by the scientists feeding the databases (e.g.
F. Lique, A. Faure). Those files are made compatible with their associated molecular
database (JPL and/or CDMS) so that the quantum numbers, Einstein coefficients, upper
energy levels and rest frequencies match. Indeed, some species may have less quantum
numbers from database to another and some collision coefficients do merge some K+/-
transitions (CH3CN example). Currently the database contains data for more than 60
molecular species. Several isotopomers and deuterated versions are also available. Work
is currently underway to add more data files. We encourage comments from the users in
order to improve and extend the database. Here is below the proposed collision files to
be used in CASSIS. You can also use your own modified collision rates, but be careful to
use the underscore symbol between the quantum numbers.
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Example:
! LEVEL + ENERGY(CM-1) + WEIGHT + QUANTUM NOS.
1 0.0000 3.0 0 0 0
2 2.1346 9.0 1 0 1
should be :
! LEVEL + ENERGY(CM-1) + WEIGHT + QUANTUM NOS.
1 0.0000 3.0 0 0 0
2 2.1346 9.0 1 0 1

Then, when using the LTE-RADEX modelling within CASSIS, select your file using
Ctrl + left click under the ”Collision” tab.
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Chapter 3

Molecules (using the JPL or CDMS
catalogs) in CASSIS

CASSIS ingests the JPL and CDMS databases as well as their partition functions as a
whole in a SQLite database.

3.1 The Einstein Aul coefficients

The line intensity in the catalogs, Iul(300K) is obtained from:

Iul(T ) =
8π3

3hc
νulSulµ

2[e−El/kT − e−Eu/kT ]/Qrs(T ) (3.1)

where νul is the line frequency, Sul is the line strength, µ is the dipole moment along
the molecular axis and Qrs is the rotation-spin partition function (using the same zero of
energy as Eu and El). The units of intensity given in the catalog is nm2.MHz
The average spontaneous emission rate from the upper states into the lower states is:

Aul = Iul(T )ν
2
ul

Qrs(T )

gu

1

e−El/kT − e−Eu/kT
× 8π

c2
(3.2)

where T = 300 K.

Aul = Iul(T )ν
2
ul

Qrs(T )

gu

1

e−El/kT − e−Eu/kT
× 2.796410−16 s−1 (3.3)

where Iul(T) is in nm2.MHz and ν is in MHz.

3.2 Spin symmetry separation

In the cold regions of the ISM it is important to consider ortho and para (or A and E)
states separately. The energy of the lowest rotational or rotation-hyperfine level is 0 by
default. The energy of the lowest level for the other spin-modification(s) is usually given
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in the documentation. One should consider Q values for the different spin-modifications
separately at least at low temperatures. The CDMS database intends to provide this
information in the near future.

In the CASSIS database, a catalog (tagged ”VASTEL”) takes into account the
ortho/para/A/E forms for many species such as H2O, D2O, H2S, D2S, H2CO, CH3OH,
H2

13CO, H2C
18O, D2CO, NH3, NH2D, CH3CCH, HCOOCH3, c-C3H2, CH3CN, H2D

+

and D2H
+ molecules using either the JPL or CDMS catalogs.

A file called catdir.cat is also provided. Each element of this file has the following
format:
TAG: the species tag or molecular identifier (8 or 9 on the 5th digit to separate the
ortho/para/A/E symmetry). For example 020091 for o–D2O, means that the CDMS
catalog (original D2O = 020502) has been used (4th digit) to be compared with 20592
for o–D2O where the JPL database has been used (original D2O tag= 020001).
NAME: an ASCII name for the species.
NLINE: the number of lines in the catalog.
QLOG: A seven-element vector containing the base 10 logarithm of the partition function
for temperatures of 300 K, 225 K, 150 K, 75 K, 37.5 K, 18.75 K, 9.375 K, respectively.
The main interest of having those Q(Tex) for each symmetry, is an accurate computation
for the column density for a symmetry state, or in the case of CASSIS, computation of
the main beam temperature for a line of a certain symmetry.
VERSION: the version of the calculation for this species in the catalog (starts at number
69).
ALOG: the base 10 logarithm of the partition function for temperature of 300 K as found
in the CDMS or JPL database, where the ortho and para forms are not disentangled.
This value is necessary to compute the Einstein coefficients.

Note that the partition functions are provided at temperatures of 300 K, 225 K, 150 K,
75 K, 37.5 K, 18.75 K, 9.375 K. Interpolation is made for temperatures inside this range.
So LTE model for lower temperatures (e.g. 6 K) can be problematic. However, CASSIS
provides also the computation for lower temperatures than 9.375 K and higher than
300 K for many species. The files are provided in the cassis/database/sqlPartitionMole
directory as ascii files. If you plan to make a LTE model outside the usual range
[9.375-300] K, you should check whether your species is in this directory. For example,
in the case of the para c-C3H2 molecule, you can check that the file 38582.txt file in
the cassis/database/sqlPartitionMole has a computed partition function as low a 3 K,
with a value 2.3 times lower than the value at 9.375 K. By default, CASSIS will use
the partition functions provided in this directory. An error message is provided when
requesting excitation temperatures outside the range.

example 1: H2O and D2O

H2O and D2O are asymmetric top molecules, with the dipole moment along the
b-axis. They have ortho and para forms. The notation for the transitions is J,Ka,Kc.
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For H2O:

gJ=3(2J+1) ΣK odd : ortho transitions
gJ=(2J+1) ΣK even : para transitions
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex where E0−para = 0 K
Qortho(Tex)=Σgie

−(Ei−E0−ortho)/kTex where E0−ortho = 34.23 K
1113342.9640 0.3000 -0.8353 3 0.0000 3 -180031404 1 1 1 0 0 0 0 0
556936.0020 0.0500 -0.8147 3 23.7944 9 -180031404 1 1 0 0 1 0 1 0

For D2O:

gJ=6(2J+1) ΣK even : ortho transitions
gJ=3(2J+1) ΣK odd : para transitions
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex where E0−para = 17.43 K
Qortho(Tex)=Σgie

−(Ei−E0−ortho)/kTex where E0−ortho = 0 K
607349.6000 0.2000 -1.3353 3 0.0000 18 -20001 303 1 1 1 0 0 0
316799.8100 0.1200 -2.0408 3 12.1170 9 -20001 303 1 1 0 1 0 1

and you can compare with the values provided by CDMS (Qtotal(Tex)) with:

Qtotal(Tex) = Qortho(Tex) +Qpara(Tex)× exp(−E0−para/Tex) (3.4)

Also you can check that it is consistent with the D2O CDMS database when at the
Boltzmann value (2) for Tex ∼ 2 (see Fig. 3.1). The Boltzmann value is computed as:

o

p
ratio =

Qortho(Tex)

Qpara(Tex)× exp(−E0−para/Tex)
(3.5)

Figure 3.1: The Boltzmann value (dotted-dashed line) for D2O as a function of temper-
ature. The grey box refers to an upper limit observed with Herschel Vastel et al. [2010]

31



example 2: H2S and D2S

The H2S and D2S molecules are asymmetric top molecules. They have ortho and
para forms. The notation for the transitions is J,Ka,Kc.

For H2S:

gJ=3(2J+1) ΣK odd : ortho transitions
gJ=(2J+1) ΣK even : para transitions
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex where E0−para = 0 K
Qortho(Tex)=Σgie

−(Ei−E0−ortho)/kTex where E0−ortho = 19.78 K
452390.3300 0.0700 -2.6154 3 0.0000 3 -34002 303 1 1 1 0 0 0
168762.7624 0.0100 -2.8376 3 13.7463 9 -34002 303 1 1 0 1 0 1

For D2S:

gJ=6(2J+1) ΣK even : ortho transitions
gJ=3(2J+1) ΣK odd : para transitions
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex where E0−para=10.01 K

Qortho(Tex)=Σgie
−(Ei−E0−ortho)/kTex where E0−ortho = 0 K

91359.1209 0.0230 -4.1358 3 6.9561 9 340 303 1 1 0 1 0 1
237903.6752 0.0581 -3.1702 3 0.0000 18 340 303 1 1 1 0 0 0

example 3: H2CO and D2CO

H2CO and D2CO are planar asymetric top molecules but the assymetry is very small:
they are therefore almost prolate symmetric top molecules with the dipole moment along
the A-axis. The notation for the transitions is J,Ka,Kc.

For H2CO:

gJ=(2J+1) Ka is even : para transitions
gJ=3(2J+1) Ka is odd : ortho transitions
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex where E0−para=0 K
Qortho(Tex)=Σgie

−(Ei−E0−ortho)/kTex where E0−ortho = 15.16 K
4829.6600 .0010 -5.9024 3 10.5390 9 -30004 303 1 1 0 1 1 1
72837.9480 .0100 -4.1792 3 .0000 3 -30004 303 1 0 1 0 0 0

Then:

Qtot(Tex) = Qpara(Tex) + e−15.16/TexQortho(Tex)

For D2CO:
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gJ=6(2J+1) Ka is even : ortho transitions
gJ=3(2J+1) Ka is odd : para transitions
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex where E0−para = 8.05 K
Qortho(Tex)=Σgie

−(Ei−E0−ortho)/kTex where E0−ortho = 0 K
6096.0673 .0039 -6.2883 3 5.5983 9 32006 303 1 1 0 1 1 1
58468.6700 .1000 -4.1897 3 .0000 18 -32006 303 1 0 1 0 0 0

example 4: H2D
+ and D2H

+

These molecules are asymmetric top molecules. The notation for the transitions is
J,Ka,Kc.

For D2H
+:

gI=6(2I+1) ΣK even : ortho transitions (warning: different from the documentation file
in the CDMS catalog)
gI=3(2I+1) ΣK odd : para transitions (warning: different from the documentation file
in the CDMS catalog)
The partition function for the ortho transitions will be different than the one for the
para transitions. This is necessary in order to estimate the main beam temperature from
a column density of a line or to determine the column density from an observation. The
need is all the more important as the energy difference between the zero level for the
ortho transitions and the zero level for the para transitions is large (see Figure 3.2).
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex

Qortho(Tex)=Σgie
−(Ei−E0−ortho)/kTex

where E0−para is the fundamental energy of the para level (50.2 K) and E0−ortho is the
fundamental energy of the ortho level (0 K).

Qpara(Tex=8K)=9.1 Qortho(Tex=8K)=6.00
Qpara(Tex=10K)=9.3 Qortho(Tex=10K)=6.02
Qpara(Tex=12K)=9.6 Qortho(Tex=12K)=6.05
Qpara(Tex=15K)=10.0 Qortho(Tex=15K)=6.16

For H2D
+:

gI=3(2I+1) Ka odd : ortho transitions
gI=1(2I+1) Ka even : para transitions
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex

Qortho(Tex)=Σgie
−(Ei−E0−ortho)/kTex

where E0−para is the fundamental energy of the para level (0 K) and E0−ortho is the
fundamental energy of the ortho level (86.4 K).

Qpara(Tex=8K)=1.00 Qortho(Tex=8K)=9.96
Qpara(Tex=10K)=1.00 Qortho(Tex=10K)=10.51
Qpara(Tex=12K)=1.01 Qortho(Tex=12K)=11.03
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Qpara(Tex=15K)=1.04 Qortho(Tex=15K)=11.74
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Figure 3.2: Lower energy transitions for the H2D
+ and D2H

+ molecules.
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