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I. Radiative transfer

The intensity of a source emitting in the interstellar medium along a line of
sight Iν , will change if the radiation is absorbed or emitted, and this change can be
described by the equation of transfer :

dIν
ds

= −ανIν + jν (1)

where dIν
ds

represents the change of the intensity Iν at the corresponding frequency
ν through a slab of material of thickness s. It depends on the absorption coefficient
αν and the emissivity jν .

In Local Thermodynamic Equilibrium (LTE) the intensities of emitted and ab-
sorbed radiation are not independant. The Einstein coefficients give a convenient
means to describe the interaction of radiation with matter by the emission and ab-
sorption of photons.
Consider a gas containing atoms with discrete energy levels Eu and El. According
to Einstein (1916), a system in the excited state Eu will return spontaneously to
the lower level El with a certain probability Aul such that nuAul is the number of
such spontaneous transitions per second in a unit volume, with nu the density of
state u. The difference in energy between transition u and l results in a frequency
ν=(Eu-El)/h. The absorption line will be described by a line profile function Φ(ν)
which is peaked and normalized: ∫ ∞

0
Φ(ν)dν = 1 (2)

If the intensity of the radiation field is Iν , we can define an average intensity by:

Ī =
∫ ∞
0

IνΦ(ν)dν (3)

The probability of the absorption of a photon is BluŪ such that the number
of absorbed photons is nlBluŪ where Ū=4πĪ/c is the average energy density of the
radiation field. Einstein found that in order to derive Planck’s law, another emission
process was needed: nuBulŪ that is the number of photons emitted by stimulated
emission. If the system is in a stationary state, the number of absorbed and emitted
photons must be equal:

nuAul + nuBulŪ = nlBluŪ (4)

We can express jν and αν by:

jν =
hν

4π
nuAulΦ(ν) (5)
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Figure 1: Transitions between the states up (u) and low (l) and the Einstein coeffi-
cients.

αν =
hν

c
(nlBlu − nuBul) Φ(ν) (6)

Let’s define the opacity τ of a line by :

dτ = ανds (7)

and the source function by :

Sν =
jν
αν

(8)

Then we get :
dIν
dτν

= −Iν + Sν (9)

dIν
dτν

eτ + Iνe
τ = Sνe

τ (10)

d

dτν
(Iνe

τ ) = Sνe
τ (11)

We can then integrate this equation between 0 and τν :∫ τν

0

d

dτν
(Iνe

τ ) dτν =
∫ τν

0
Sνe

τ dτν (12)
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Assuming that the source function is constant, we then get :

Iν = Sν + e−τν (Iν0 − Sν) (13)

where Iν0 represents the cosmic microwave background (CMB) at 2.7 K. The emitted
intensity of an astronomical source is coupled to the CMB. In order to compare the
intensity of the observed signal with the original intensity of the emitting source in
absence of the intervening interstellar medium (Iν(0)), we get :

Iνobs(s) = Iν(s)− Iν(0) = (Sν(T )− Iν(0))(1− e−τν ) (14)

With this equation, we assume that the source function does not vary as a function
of the opacity, namely it does not vary throughout the cloud. The source function
can be described as :

Sν =
hν
4π
nuAul

hν
c

(nlBlu − nuBul)
(15)

We can describe an excitation temperature, Tex, which characterizes the popu-
lation levels :

nu
nl

=
gu
gl
e−

hν
kTex (16)

Then :

Sν =
Aulc

4π

1
gl
gu
eEul/kTexBlu −Bul

(17)

In LTE, the brightness distribution is described by the Planck function, which
depends only on the thermodynamic temperature T of the surroundings (blackbody
radiation) :

Sν(T ) =
2hν3

c2
1

ehν/kT − 1
(18)

Iν(0) =
2hν3

c2
1

ehν/2.7k − 1
(19)

From equations 17, 18 and 19, we find that the Einstein coefficients Aul, Bul and
Blu are not independent and must obey :

glBlu = guBul (20)

Aul =
8πhν3

c3
Bul (21)

We note that the previous equation defines B in terms of radiation density per
unit frequency interval. The intensity of radiation at frequency ν, observed by a
telescope, is given by :

Iobs = (I(Tex)− I(TCMB))(1− e−τν ) (22)
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where Tex is the excitation temperature in the cloud and TCMB is the cosmic mi-
crowave background at 2.7 K. In the Rayleigh-Jeans limit (namely T0

T
� 1 where

T0 = hν/k),

Iν =
2kT

λ2
(23)

It is the custom in radioastronomy to measure the brightness of a source by its
brightness temperature, Tb. This is the temperature which would result in the
given brightness if inserted into the Rayleigh-Jeans law.

Equation 22 then becomes :

Tb(v) = T0

(
1

eT0/Tex − 1
− 1

eT0/2.7 − 1

)
(1− e−τ(v)) (24)

where T0=hν/k.
When a background continuum source (Tdust, τdust) is coupled to the molecu-

lar/atomic cloud (Tex, τ) along the line of sight, the previous equation must take
into account the dust temperature and opacity, as well as the cosmic microwave
background (CMB). In a on-off observation, the resulting brightness temperature
obtained from the telescope is :

Tb = Jν(CMB)e−τduste−τ+ΩdustJν(Tdust)(1−e−τdust)e−τ+ΩJν(Tex)(1−e−τ )−Jν(CMB)
(25)

where Jν(T ) = (hν/k)∗1/(ehν/kT −1) is the radiation temperature, Ωdust represents
the dilution factor for the continuum source and Ω represents the dilution factor for
the molecular/atomic cloud. In the case where τdust = 0 and Ω = 1, the equation
becomes :

Tb = (Jν(Tex)− Jν(CMB))(1− e−τ ) (26)

In the case where Ω=Ωdust=1, then:

Tb = (Jν(CMB)e−τdust +Jν(Tdust)(1− e−τdust))e−τ +Tex(1− e−τ )−Jν(CMB) (27)

Outside the line, towards the continuum source, the continuum obtained in the
on-off observation is defined by:

TC = (Jν(CMB)e−τdust + Jν(Tdust)(1− e−τdust))− Jν(CMB) (28)

Combining equations 27 and 28 give a resulting brightness temperature that is
used for the CASSIS formalism :

Tb = TCe−τ + (1− e−τ ) (Jν(Tex)− Jν(CMB)) (29)
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• For emission lines:

Tb − TC = ∆T = (1− e−τ ) (Jν(Tex)− Jν(CMB)− TC) (30)

• For absorption lines:

TC − Tb = Tabs = (1− e−τ ) (TC − Jν(Tex) + Jν(CMB)) (31)

Several components (spatially distributed, with different VLSR and/or tempera-
ture/density) and molecules can be modelled at the same time. For each molecules,
several transition can be modelled within the spectrum. The spectra of these com-
ponents are computed separately, and then added iteratively. In the following equa-
tions, the indices i, j and k correspond to components, molecules, and lines, respec-
tively. The spectrum is computed in a first iteration with the first component:

Tb,0(ν) = IC(ν)e
−
∑
j,k

τ0,j,k(ν)

+
∑
j

η0,j

(
1− e

−
∑
k

τ0,j,k
)

(Jν(Tex,0,j,k)− Jν(Tbg)) (32)

where η is the beam dilution factor lying between 0 and 1(see Section VI). The other
components are then added iteratively:

Tb,i=[1,N−1](ν) = Tb,0(ν)e
−
∑
j,k

τi,j,k(ν)

+
∑
j

ηi,j

(
1− e

−
∑
k

τi,j,k
)

(Jν(Tex,i,j,k)− Jν(Tbg))

(33)
The continuum emission is assumed to be optically thin (i.e. transparent to the
CMB) and spatially uniform, to fill the beam of the single-dish telescope or the
synthesized beam of the interferometer. For the moment, it is not possible to use a
beam dilution for the continuum within CASSIS. Tbg should have the same value
along the same line of sight, for all modelled components. In LTE, Tex,i,j,k has the
same value within each component (i) for each transition (k).

The line opacity can be expressed as a function of the column density and the
excitation temperature, that we assume to be constant on the line of sight :∫

τdv =
∫ hνΦν

c
(Blunl −Bulnu)dv =

gu
gl

Aulc
3nl

8πν3
(1− exp(−hν/kTex)) (34)

Where Φν is the line profile with
∫

Φ(ν)dν=1.
For a gaussian line shape, we can express the opacity as a function of the cloud’s

depth :

τul(z) =
Aulc

3

8πν3ul∆v
√
π/2
√
ln2

∫ z

0
nu

(
nlgu
nugl

− 1

)
dz′ (35)
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where ∆v (velocity units) is the full width at half maximum of the observed line.
Integrating on the line of sight, we get, at the line center :

τ0 =
gu
gl

c2

8πν2∆ν
√
π/2
√
ln2

AulNl

(
1− e−hν/kTex

)
(36)

where ∆ν (frequency units) is the full width at half maximum of the observed line,
and Nl is the column density in the lower state.

This equation can also be expressed as:

τ0 =
c2AulNu

8πν2∆ν
√
π/2
√
ln2

(
ehν/kTex − 1

)
(37)

This can be related to the total column density:

Ntot = NlowestQ(Tex)/glowest = NuQ(Tex)e
Eu/kTex/gu. (38)

where Q(Tex) is the partition function for an excitation temperature Tex and the
index ”lowest” represents the lowest level associated to the molecule and its form
(ortho, para, ...). Eu is the upper level of the transition compared to the ground
level (different from zero when orho, para or meta forms). When the collisition rate
between molecules is high (in LTE), Tex → Tb → TK . By choosing a column density
such that τ � 1 at the line center, the line will therefore saturate, the temperature
at the line center will become constant, and will result in a non-negligeable line
broadening (see Equation 24). At Tex = 20 K, for the 12CO molecule, we get
Tb = 16.5 K for the 1 → 0 transition and Tb = 14.8 K for the 2 → 1 transition.
Figure 2 presents the line profiles of the 12CO molecule for transitions 1 → 0 and 2
→ 1 at Tex = 20 K, FWHM = 1 km s−1, τ = 10 and τ = 0.5 at the line center.

Several mechanisms can broaden spectral lines. The most important involves the
Doppler effect. Individual atoms are in random, chaotic motion. The hotter the gas,
the faster the random thermal motions of the atoms. When a photon is emitted by
an atom in motion, the frequency of the detected photon is changed by the Doppler
effect. The photon is then not recorded at the precise frequency predicted by atomic
physics but rather at a slightly shifted. Throughout the whole cloud, atoms move in
every possible direction, resulting in a broadening of the line. From Fuller & Myers
(1992) :

(∆v)2 = 8ln(2)
kT

m
(39)

where ∆v is the full width at half maximum, k is the Boltzmann constant, T is
temperature in the gas, and m is the mass of the atom (or molecule). For example,
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Figure 2: Line profiles for the 12CO transitions 1→ 0 and 2→ 1 at Tex = 20 K, ∆v
= 1 km s−1and τ = 0.5 (plain lines) and 10 (dot-dashed lines) at the line center.

in the case of the D2H
+ molecule, at a temperature of 8 K, the thermal linewidth

will be 0.27 km/s. Note that turbulence can also result in the broadening of a
spectral line.

For CASSIS: by defining a column density and an excitation temper-
ature, we get from 34

∫
τdv. Then, using a linewidth (before broadening

due to optical depth), we get τ(v) (as a function of velocity), which has
a gaussian profile:

τ(v) = τ0exp(−
(v − v0)2

2σ2
) (40)

where v0 is the velocity in the local standard of rest (VLSR),
σ(km/s) = ∆v(km/s)/(2

√
2ln2), where ∆v is the full-width at half

maximum. Then from 24 we get Tb as a function of velocity. This results
in a line profile that is to be included in CASSIS.
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II. Use of a non-LTE radiative transfer code within
CASSIS: RADEX

You can also use a non-LTE radiative transfer code within the CASSIS software.
RADEX is a statistical equilibrium radiative transfer code and is made available for
public use as part of the Leiden Atomic and Molecular Database (LAMDA). it is a
one-dimensional non-LTE radiative transfer code, that uses the escape probability
formulation assuming an isothermal and homogeneous medium without large-scale
velocity fields. RADEX is comparable to the LVG method and provides a useful
tool in rapidly analyzing a large set of observational data providing constraints on
physical conditions, such as density and kinetic temperature.
If you plan to use RADEX within CASSIS, you have first to download, install and
check RADEX :

• Download RADEX from the official RADEX website:
https://personal.sron.nl/∼vdtak/radex/index.shtml

• Install and check RADEX as stated on the RADEX website

• When your RADEX install is working, copy the whole RADEX directory
into your current CASSIS directory. This is mandatory because CASSIS will
change some files of RADEX, making it unusable outside CASSIS. Do not run
RADEX standalone from the RADEX directory in CASSIS, run it from your
original install directory. Note that the collisional files in the RADEX/Data
directory are not used, as used with RADEX standalone. CASSIS will use the
collisional files in its database/lamda directory.

The input parameters are: the kinetic temperature, the density of the collision
partner (H2, p-H2, o-H2, electrons, H (atoms), He, and H+), the molecular column
density, the line width and the temperature of background radiation (2.73 K by
default). RADEX computes the opacity of the line, the excitation temperature
(K), the peak intensity (K) and the line flux (K.km/s) which is simply calculated

as the integral of the Gausssian:
∫
TRdv = TR × FWHM ×

√
2π

2
√

2ln(2)
where FWHM

is the Full Width at Half Maximum (km/s).
The integrated profile is useful for estimating the total amount of emission in the
line, although it has limited meaning for optically thick lines since the changing
optical depth over the profile is not taken into account. Using the RADEX code
as a standalone version, the entire radiative transfer is performed with rectangular
line shapes.
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Here is an example of the output from RADEX standalone on the HCO+ molecule:
Radex version : 30nov2011
Geometry : Uniform sphere
Molecular data file : /Users/vastel/CODES/Radex/data/hco+.dat
T(kin) [K]: 100.000
Density of H2 [cm-3]: 1.000E+11
T(background) [K]: 2.730
Column density [cm-2]: 3.000E+14
Line width [km/s]: 1.000
Calculation finished in 10 iterations
Line Eup Freq(GHz) Tex(K) τ TR(K) Flux(K.km/s)
2-1 12.8 178.3748 100.0 1.814E+00 7.985E+01 8.500E+01
3-2 25.7 267.5573 100.0 3.670E+00 9.122E+01 9.710E+01
4-3 42.8 356.7338 100.0 5.618E+00 9.132E+01 9.721E+01
5-4 64.2 445.9024 100.0 7.245E+00 8.961E+01 9.539E+01

CASSIS uses the opacity and excitation temperature from the output file, to
reconstruct the line profile using equation 29. For optically thick lines, CASSIS
will broaden the line profile although RADEX keeps a constant FWHM. Linewidths
may be different from one line to another due to the opacity effect, therefore one
computation for one unique FWHM cannot be done.
For example, Fig. 3 shows a synthetic spectrum of the 5-4 transition of HCO+

(black line=LTE model with 8 K noise) for the above parameters (N=3×1014cm−2,
FWHM= 1 km/s, Tex=100 K). We perform the RADEX modeling (red line) using
a high density so that we reach LTE (nH2 = 1011 cm−3), with Tk = 100 K. Using
a 1km/s line width, the integrated flux intensity from RADEX should be 95.39
K.km/s (see table above), well below the observed flux of ∼ 1.8 (km/s) × 89.6 (K)=
161.3 K.km/s, where 1.8 km/s represents the line width of the observed line (after
broadening due to the opacity effect). Using a 1.8 km/s line width in the standalone
RADEX version gives:
Line Eup Freq(GHz) Tex(K) τ TR(K) Flux(K.km/s)
5– 4 64.2 445.9024 100.0 4.025E+00 8.807E+01 1.688E+02
with a line flux of 168.8 K.km/s compatible with the modelled flux from CASSIS.
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Figure 3: Modeled HCO+ 5-4 transition in LTE (black) and with RADEX (red).

III. Molecules (using the JPL or CDMS catalogs)

1) The Einstein Aul coefficients
The line intensity in the catalogs, Iul(300K) is obtained from:

Iul(T ) =
8π3

3hc
νulSulµ

2[e−El/kT − e−Eu/kT ]/Qrs(T ) (41)

where νul is the line frequency, Sul is the line strength, µ is the dipole moment along
the molecular axis and Qrs is the rotation-spin partition function (using the same
zero of energy as Eu and El). The units of intensity given in the catalog is nm2.MHz
The average spontaneous emission rate from the upper states into the lower states
is:

Aul = Iul(T )ν2ul
Qrs(T )

gu

1

e−El/kT − e−Eu/kT
× 8π

c2
(42)

where T = 300 K.

Aul = Iul(T )ν2ul
Qrs(T )

gu

1

e−El/kT − e−Eu/kT
× 2.796410−16 s−1 (43)

where Iul(T) is in nm2.MHz and ν is in MHz.

2) The partition functions
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In the cold regions of the ISM it is important to consider ortho and para states
separately. The energy of the lowest rotational or rotation-hyperfine level is 0
by default. The energy of the lowest level for the other spin-modification(s) is
usually given in the documentation. One should consider Q values for the different
spin-modifications separately at least at low temperatures. The CDMS database
intends to provide this information in the near future.

In the CASSIS database, the new catalog (tagged ”VASTEL”) takes into ac-
count the ortho/para/A/E forms for the H2O, D2O, H2S, D2S, H2CO, CH3OH,
H2

13CO, H2C
18O, D2CO, NH3, NH2D, CH3CCH, HCOOCH3, c-C3H2, H2D

+ and
D2H

+ molecules. The JPL catalog has been used for the NH3, D2S, H2O, D2O,
c-C3H2, CH3OH, HCOOCH3 and H2S molecules; the CDMS catalog has been used
for the NH2D, H2CO, H2

13CO, H2C
18O, D2CO, D2O, D2S, H2S, H2O, CH3CCH,

c-C3H2, H2D
+ and D2H

+ molecules.
A file called catdir.cat is also provided. Each element of this file has the

following format:
TAG: the species tag or molecular identifier (8 or 9 on the 5th digit to separate
the ortho/para/A/E symmetry). For example 020091 for o–D2O, means that the
CDMS catalog (original D2O = 020502) has been used (4th digit) to be compared
with 20592 for o–D2O where the JPL database has been used (original D2O tag=
020001).
NAME: an ASCII name for the species.
NLINE: the number of lines in the catalog.
QLOG: A seven-element vector containing the base 10 logarithm of the partition
function for temperatures of 300 K, 225 K, 150 K, 75 K, 37.5 K, 18.75 K, 9.375
K, respectively. The main interest of having those Q(Tex) for each symmetry, is
an accurate computation for the column density for a symmetry state, or in the
case of CASSIS, computation of the main beam temperature for a line of a certain
symmetry.
VERSION: the version of the calculation for this species in the catalog (starts at
number 69).
ALOG: the base 10 logarithm of the partition function for temperature of 300 K
as found in the CDMS or JPL database, where the ortho and para forms are not
disentangled. This value is necessary to compute the Einstein coefficients.

Note that the partition functions are provided at temperatures of 300 K, 225 K,
150 K, 75 K, 37.5 K, 18.75 K, 9.375 K. Interpolation is made for temperatures inside
this range. So LTE model for lower temperatures (e.g. 6 K) can be problematic.
However, CASSIS provides also the computation for lower temperatures than
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9.375 K and higher than 300 K for many species. The files are provided in the
cassis/database/sqlPartitionMole directory as ascii files. If you plan to make a
LTE model outside the usual range [9.375-300] K, you should check whether your
species is in this directory. For example, in the case of the para c-C3H2 molecule,
you can check that the file 38582.txt file in the cassis/database/sqlPartitionMole
has a computed partition function as low a 3 K, with a value 2.3 times lower than
the value at 9.375 K. By default, CASSIS will use the partition functions provided
in this directory.

example 1: H2O and D2O

H2O and D2O are asymmetric top molecules, with the dipole moment along the
b-axis. They have ortho and para forms. The notation for the transitions is J,Ka,Kc.

For H2O:

gJ=3(2J+1) ΣK odd : ortho transitions
gJ=(2J+1) ΣK even : para transitions
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex where E0−para = 0 K
Qortho(Tex)=Σgie

−(Ei−E0−ortho)/kTex where E0−ortho = 34.23 K
1113342.9640 0.3000 -0.8353 3 0.0000 3 -180031404 1 1 1 0 0 0 0 0
556936.0020 0.0500 -0.8147 3 23.7944 9 -180031404 1 1 0 0 1 0 1 0

For D2O:

gJ=6(2J+1) ΣK even : ortho transitions
gJ=3(2J+1) ΣK odd : para transitions
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex where E0−para = 17.43 K
Qortho(Tex)=Σgie

−(Ei−E0−ortho)/kTex where E0−ortho = 0 K
607349.6000 0.2000 -1.3353 3 0.0000 18 -20001 303 1 1 1 0 0 0
316799.8100 0.1200 -2.0408 3 12.1170 9 -20001 303 1 1 0 1 0 1

example 2: H2S and D2S

The H2S and D2S molecules are asymmetric top molecules. They have ortho
and para forms. The notation for the transitions is J,Ka,Kc.

For H2S:
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gJ=3(2J+1) ΣK odd : ortho transitions
gJ=(2J+1) ΣK even : para transitions
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex where E0−para = 0 K
Qortho(Tex)=Σgie

−(Ei−E0−ortho)/kTex where E0−ortho = 19.78 K
452390.3300 0.0700 -2.6154 3 0.0000 3 -34002 303 1 1 1 0 0 0
168762.7624 0.0100 -2.8376 3 13.7463 9 -34002 303 1 1 0 1 0 1

For D2S:

gJ=6(2J+1) ΣK even : ortho transitions
gJ=3(2J+1) ΣK odd : para transitions
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex where E0−para=10.01 K

Qortho(Tex)=Σgie
−(Ei−E0−ortho)/kTex where E0−ortho = 0 K

91359.1209 0.0230 -4.1358 3 6.9561 9 340 303 1 1 0 1 0 1
237903.6752 0.0581 -3.1702 3 0.0000 18 340 303 1 1 1 0 0 0

example 3: H2CO and D2CO

H2CO and D2CO are planar asymetric top molecules but the assymetry is very
small: they are therefore almost prolate symmetric top molecules with the dipole
moment along the A-axis. The notation for the transitions is J,Ka,Kc.

For H2CO:

gJ=(2J+1) Ka is even : para transitions
gJ=3(2J+1) Ka is odd : ortho transitions
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex where E0−para=0 K
Qortho(Tex)=Σgie

−(Ei−E0−ortho)/kTex where E0−ortho = 15.16 K
4829.6600 .0010 -5.9024 3 10.5390 9 -30004 303 1 1 0 1 1 1
72837.9480 .0100 -4.1792 3 .0000 3 -30004 303 1 0 1 0 0 0

Then:

Qtot(Tex) = Qpara(Tex) + e−15.16/TexQortho(Tex)

For D2CO:

gJ=6(2J+1) Ka is even : ortho transitions
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gJ=3(2J+1) Ka is odd : para transitions
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex where E0−para = 8.05 K
Qortho(Tex)=Σgie

−(Ei−E0−ortho)/kTex where E0−ortho = 0 K
6096.0673 .0039 -6.2883 3 5.5983 9 32006 303 1 1 0 1 1 1
58468.6700 .1000 -4.1897 3 .0000 18 -32006 303 1 0 1 0 0 0

example 4: H2D
+ and D2H

+

These molecules are asymmetric top molecules. The notation for the transitions
is J,Ka,Kc.

For D2H
+:

gI=6(2I+1) ΣK even : ortho transitions (warning: different from the documentation
file in the CDMS catalog)
gI=3(2I+1) ΣK odd : para transitions (warning: different from the documentation
file in the CDMS catalog)
The partition function for the ortho transitions will be different than the one
for the para transitions. This is necessary in order to estimate the main beam
temperature from a column density of a line or to determine the column density
from an observation. The need is all the more important as the energy difference
between the zero level for the ortho transitions and the zero level for the para
transitions is large (see Figure 4).
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex

Qortho(Tex)=Σgie
−(Ei−E0−ortho)/kTex

where E0−para is the fundamental energy of the para level (50.2 K) and E0−ortho is
the fundamental energy of the ortho level (0 K).

Qpara(Tex=8K)=9.1 Qortho(Tex=8K)=6.00
Qpara(Tex=10K)=9.3 Qortho(Tex=10K)=6.02
Qpara(Tex=12K)=9.6 Qortho(Tex=12K)=6.05
Qpara(Tex=15K)=10.0 Qortho(Tex=15K)=6.16

For H2D
+:

gI=3(2I+1) Ka odd : ortho transitions
gI=1(2I+1) Ka even : para transitions
Qpara(Tex)=Σgie

−(Ei−E0−para)/kTex

Qortho(Tex)=Σgie
−(Ei−E0−ortho)/kTex
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where E0−para is the fundamental energy of the para level (0 K) and E0−ortho is the
fundamental energy of the ortho level (86.4 K).

Qpara(Tex=8K)=1.00 Qortho(Tex=8K)=9.96
Qpara(Tex=10K)=1.00 Qortho(Tex=10K)=10.51
Qpara(Tex=12K)=1.01 Qortho(Tex=12K)=11.03
Qpara(Tex=15K)=1.04 Qortho(Tex=15K)=11.74
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Figure 4: Lower energy transitions for the H2D
+ and D2H

+ molecules.
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IV. Absorption lines

1) Astrophysical observations
The determination of column densities from absorption lines is more accurate

in general, with respect to the quantities inferred from the analysis of emission
lines, because the calculated value does not depend on the excitation temperature
of the line, Tex, as long as this is negligeable with respect to the temperature of the
background continuum source Tc.

Ntot =
8πν3

Aulc3
∆v

√
π

2
√

ln2

gl

gu

τ0 (44)

and,

τ0 = −ln(1− Tabs

TC

) (45)

where τ0 is the opacity at the line center, Tabs is the temperature of the absorption
line and TC is the temperature of the continuum. The opacity profile is defined
as 40. Using T(v) (with the 0 K level reference) we get T (v) = TC − Tabs(v).
Absorption lines can then be determined (see Figure 5).

CASSIS take into account the background continuum and the excitation tem-
perature of the lines (see section I) to determine the line intensity (see equation
29):

Tb = TCe−τ + (1− e−τ ) (Jν(Tex)− Jν(CMB)) (46)

Since Ntot can be computed as (see section I):

Ntot =
8πν3

Aulc3
∆v

√
π

2
√

ln2

τ0Q(Tex)

gu

exp(Eu/kTex)

[exp(hν/kTex)− 1]
(47)

then, the opacity is deduced and therefore the line profile. NB: Eu is the upper
level of the transition compared to the ground level (different from zero when orho,
para or meta forms).

Towards SgrB2(M), we get a continuum of ∼ 1920 Jy around 692 GHz in a
30” beam and ∼ 4000 Jy around 1476 GHz in a 20” beam (Goldsmith, Lis, Hill,
Lasenby 1990). The HIFI beam width is ∼ 30” at 692 GHz and ∼ 13” at 1476
GHz. The conversion from source flux density to antenna temperature is:

Sν(Jansky)=Ta(K)/(ηπ D(cm)2/8k)=3520 × TA(K)
ηA(D(meters))2
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Figure 5: Example of absorption lines. The upper plot represents 2 absorption
features with an opacity of 10 (plain line) and with an opacity of unity (dashed-
line), with a linewidth of 5 km s−1 and a continuum normalized to unity. The lower
plot represent the opacity profiles for the same lines.

This corresponds, for the Herschel dish diameter of 3.5 m, to a continuum of
about 5 K at 692 GHz and ∼ 10 K at 1476 GHz.

For a 1.3 1013 cm−2 D2H
+ column density, with FWHM=1 km/s, we get:

1) at 691 GHz, τ ∼ 0.2 and Tabs
TC
∼ 0.2

2) at 1476 GHz, τ ∼ 0.36 and Tabs
TC
∼ 0.3

2) Laboratory measurements: gas cells
The informations concerning the physical conditions in the environment can

be deduced from the shape of the observed lines. There are several cause of line
broadening, the main being:

Natural broadening: The Uncertainty principle relates the life of an excited
state with the precision of the energy, so the same excited level will have
slightly different energies in different atoms. This broadening effect is de-
scribed by a Lorentzian profile.
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Thermal Doppler broadening: Atoms will have different thermal velocities, so
they will see the photons red or blue shifted, absorbing photons of different
energies in the frame of reference of the observer. The higher the temperature
of the gas, the larger the velocity differences (and velocities), and the broader
the line. This broadening effect is described by a Doppler profile.

Pressure broadening: the collision of other particles with the emitting particle
interrupts the emission process. The duration of the collision is much shorter
than the lifetime of the emission process. This effect depends on the density
of the gas. The broadening effect is described by a Lorentzian profile.

Opacity broadening: considerable reabsorption of emission line photons, an
effect known as opacity, often causes line broadening. The line is broadened
since photons at the line wings have a smaller reabsorption probability than
photons at the line center (see previous section).

The combined line profile will be the convolution of the line profiles of each
mechanism. For example, a combination of thermal Doppler broadening and pres-
sure broadening will yield a Voigt profile. The natural broadening is usually too
small to be taken into account. the Voigt profile must be evaluated by numerical
integration.
Let’s consider a Lorentzian profile fL and a Gaussian profile fG. The resulting line
shape will result in a Voigt profile fV , which can be expressed as the convolution of
the first two:

fν(ν − ν0, δνL, δνD) = fL ⊗ fG =

√
ln 2a

π3/2

∫ +∞

−∞

[−(ln 2)(ν ′ − ν0)2/δν2D]

(ν − ν ′)2 + δν2L
dν ′ (48)

where δνL and δνD are half-widths of the Lorentzian and Gaussian profiles respec-
tively, ν is the source frequency, ν0 is the frequency of the line center and a is
the ratio of the profiles width (δνL/δνD). We used the Liu et al. (2001) empirical
analytical approximation to determine the Voigt profile:

fV (ν − ν0, δνV ) = cLfL(ν − ν0, δνV ) + cGfG(ν − ν0, δνV ) (49)

= cL
1

π

δνV
(ν − ν0)2 + δν2V

+ cG

√
ln 2√
πδνV

exp

(
−(ln 2)(ν − ν0)2

δν2V

)
(50)

From Olivero and Longbothum (1977, J. Quant. Spectrosc. Radiati. Transfer):

δνV = 0.5346δνL +
√

0.2166δν2L + δν2D (51)
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Introducing a dimensionless parameter, d=(δνL-δνD)/(δνL+δνD), the weigth coeffi-
cients are given by:

cL = f1(d) , cG = f2(d) (52)

where d is the profile parameter. If d=1 (-1 respectively), we obtain a pure Lorentz
profile (Gaussian respectively).
Liu et al. (2001) found from the fitting on 2 molecules that:

cL = 0.68188(17) + 0.61293(31)× d− 0.18384(39)× d2 − 0.11568(44)× d3 (53)

cG = 0.32460(17)− 0.61825(31)× d+ 0.17681(39)× d2 + 0.12109(44)× d3 (54)

The pressure broadening can be obtained from the HITRAN database. After se-
lecting the molecule and the spectral range you need, the JavaHAWKS software will
produce a file output. This file is read by CASSIS as ”File output from HITRAN”.
The γself parameter (in cm−1.atm−1 at 296 K) is then extracted and converted for
the needed temperature T and pressure P.

δνL = γself ×
P (mbar)

1013.25
× 299792.458105 × T

296
(55)

The probability that a molecule in a gas at temperature T has a velocity v in
a particular direction is proportional to exp(-mv2/2kT), where m is the molecular
mass. Consequently the line is symmetric and has a half width at half maximum of:

δνD =
ν0
c

√
2(ln 2)kT

m
(56)

Determining the line profile, the absorption coefficient αmax (in units of cm−1)
can be obtained from Iba:

αmax[L
−1] = H[L2]× n[L−3] (57)

where H is the line strength, L is the length of the gas cell and n is the density in the
gas cell (=P/kT). H can be expressed as a function of Iba (in nm2.MHz; based on
the integral of the absorption cross-section over the spectral line shape: see figure
6):

Iba = H × [πδνL +

√
π

ln2
δνD] (58)

Then, we get:

αmax = H × n =
Iba

πδνL +
√

π
ln2
δνD
× P

kT
(59)
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Figure 6: Gaussian line profile, with height H, and half width at half maximum δν
and the integrated profile represented by the Iab parameter (in nm2.MHz) from the
JPL and CDMS catalogues.

The power transmission through a uniform medium of length L at the peak of the
line is exp(-αmaxL). The opacity can be computed as αmaxL.

Example: 12CO (4-3) transition at 461040.7682 MHz, in a 102.54 cm length cell,
at T=300 K, and P=3.3 mB 1. From the HITRAN database δνL = 7451480.17 Hz.
At T=300K δνD = 1076200.38 Hz.

αmax =
10−3.2657

(πδL +
√

π
ln2
δD)× 3.02284

× 3.3103

1.3810−16 × 300
× 10−18 × 10−2 (60)

The opacity is then about 0.018 cm−1 × 102.54 cm=1.83. In Figure 7 we present
a comparaison between the laboratory measure and the result from a convolution
between a Gaussian profile (thermal Doppler broadening) and a Lorentzian profile
(pressure broadening) assuming that the opacity is equal to . We see that we can’t
reproduce the observed profile with the given parameters.

11 bar = 106 baryes, 1 mmHg = 0.00133 bar, 1 Torr = 1mm Hg, 760 mm Hg = 101325 Pa=1
atm=1013.25 mbar. The cgs unit for pressure is barye (1 mB = 103 barye).
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Figure 7: Comparaison between the observed HIFI spectrum (plain line) and the
modeled line using the conditions in the gas cell (dashed-line).
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V. Rotational diagram (population diagram analysis)

This term refers to a plot of the column density per statistical weight of a number
of molecular energy levels, as a function of their energy above the ground state (see
Goldsmith and Langer 1999). In LTE, this corresponds to a Boltzmann distribution,
so a plot of the natural logarithm of Nu/gu versus Eu/k yields a straight line with a
slope of 1/Trot. The temperature inferred represents the rotation temperature.
From Chapter I., we can write the optical depth of the transition as:

τ =
c3AulNu

8πν3∆v
√
π/2
√
ln2

[ehν/kTrot − 1] (61)

Neglecting the 2.7 K radiation (hν/k � 2.7), we can express the main beam tem-
perature as:

Tb =
hν

k

1

exp(hν/kTrot)− 1

1− e−τ

τ
× τ (62)

Therefore, we can compute the column density in the upper state as:

Nu =
∫
Tbdv ×

8πkν2

hc3Aul
× τ

1− e−τ
(63)

Nu = W × 8πkν2

hc3Aul
× Cτ (64)

Where W in the integrated area and Cτ is the optical depth correction factor. When
the line is optically thin, Cτ is equal to unity.
For a molecule in LTE, all excitation temperatures are the same, and the population
of each level is given by:

Nu =
Ntot

Q(Trot)
gue
−Eu/kTrot (65)

We can rewrite this equation to obtain:

ln
Nu

gu
= ln

Ntot

Q(Trot)
− Eu
kTrot

(66)

A rotational diagram can be useful to determine whether the emission is optically
thick or thin, whether the level populations are described by LTE, and to determine
what temperature describe the population distribution in the event that LTE applies.
Equation 66 can be written in terms of the observed integrated area W:

ln
8πkν2W

hc3Aulgu
= ln

Ntot

Q(Trot)
− lnCτ −

Eu
kTrot

(67)
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If we don’t take into account the Cτ factor, each of the upper level populations
would be underestimated by a factor Cτ , different for each transition. Therefore,
the ordinate of the rotation diagram would be below its correct value by the factor
ln Cτ . A change in the temperature for lines of different excitation might indicate
that the source has different temperature components or that the lines considered
are not optically thin and cannot be easily used to obtain a meaningful excitation
temperature.
Note that the error bars should be taken into account for the order 1 polynomial fit,
in order to obtain a reliable value for the uncertainty on the rotational temperature
as well as the total column density. From the Line Analysis module the user can fit
the lines and CASSIS produces a detailed .rotd file with the integrated area and rms
values for each transitions. The user is required to give a value for the instrumental
calibration uncertainty. The uncertainty of the integrated area is therefore computed
though the following formula:

∆W =
√

(cal/100×W)2 + (rms
√

2× fwhm×∆v)2 (68)

where cal is the calibration value (%), W is the integrated area (in K km/s), rms is
the noise around the selected species (in K), fwhm is the full width at half maximum
(km/s) and ∆ v is the bin size (in km/s). Therefore, the plotted uncertainties are
simply:

∆

(
ln
Nu

gu

)
=

∆W

W
(69)

Now, how do we estimate the uncertainty on the values of Trot and Ntot?
From the fitted straight line (y = ax+b) the slope a is related to the rotational excita-
tion temperature as Trot = -1/a. Then ∆Trot = ∆a/a2. The intercept b is related to
the total column density as Ntot = Q(rot) × eb. Therefore ∆Ntot = Q(rot)×∆b×eb.

We can iteratively apply the Cτ correction to the rotational diagram analysis
until a solution for Trot and Ntot has converged (convergence to be defined in CASSIS
in % for the value of epsilon). For the first iteration we use Equation 66 and obtain
values for the transitions opacity. In the second iteration we add the Cτ correction
to the linear equation:

ln
Nu

gu
= ln

Ntot

Q(Trot)
− Eu
kTrot

− lnCτ (70)

The iterations go on until a convergence has been obtained.
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As Goldsmith and Langer (1999) nicely said, this method requires
quite a large number of transitions spread over a range of upper state
energies.

CASSIS provides the values for the column density, excitation temperature and
the corresponding errors, reduced χ2 and the probability of occurrence (P value)
for a χ2 value depending on degrees of freedom. The degree of freedom in our linear
fit corresponds to the number on points (n) on which the fit was performed minus
2 (2 values extracted from the fit: N and Tex).
The method of least squares states that the best values are those for which S is
minimized:

S =
n∑
i=1

(yi − y)2

σ2
=

n∑
i=1

(yi − axi − b)2

σ2
i

(71)

Ideally S is expected to follow a chi-square distribution with its mean value equal
to the degrees of freedom ”dof”. We thus expect S to be close to dof = n - 2 if the
fit is good. A quick and easy test is to form the reduced chi-square χ2/dof which
should be close to 1 for a good fit. A more rigorous test is to look at the probability
of obtaining a χ2 value greater than S, i.e., P(χ2 ≥ S). This requires integrating the
χ2 distribution or using cumulative distribution tables. In general, if P(χ2 ≥ S) is
greater than 5%, the fit can be accepted. This probability is just a tool for deciding
whether to reject or validate the fit as frequentist statistics does not, and cannot,
attach probabilities to hypotheses. An important point to consider is when S is very
small. This implies that the points are not fluctuating enough. Beyond falsified
data, the most likely cause is an overestimation of the errors on the data points.
Indeed, the error bars represent a 1 σ deviation, so that about 1/3 of the data points
should be expected to fall outside the fit. If the errors have been under-estimated
then an improbably high value of χ2 can be obtained.

CASSIS provides the reduced χ2 and the probability P(χ2 ≥ S). Values of the
χ2 or reduced χ2 corresponding to the probability P(χ2; dof=2) of exceeding χ2 can
be found in the literature (e.g. ”Data reduction and error analysis for the physical
sciences”, Bevington, Robinson, McGraw-Hill, 2003). Since the true probability of
the data being consistent with the model depends on both χ2 and dof, we decided
to provide the reduced χ2 and the probability so that the user decides on the
goodness of its fit. For example, if we obtain a value of χ2 = 1.95 for 7 degrees of
freedom, the corresponding probability is about 96%. Although this probability
may seem to be gratifyingly high, the very low value of χ2 gives a strong indication
that the common uncertainty in the data may have been overestimated.
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If you plan on performing a population diagram analysis on 2 points only,
CASSIS will evidently not be able to provide the errors on the column density and
excitation temperature nor the χ2 and probability values.

Note that CASSIS can perform the rotational diagram analysis assuming
optically thin lines for multiplet transitions (∼ same frequency, ∼ same upper
energy), but not on blended transitions (∼ same frequency, different upper en-
ergy). However the opacity correction cannot be performed on both for the moment.

After using the Rotational Diagram module within CASSIS, I suggest that you
use the column density and excitation temperature values in the Line Analysis mod-
ule in order to compare the synthetic spectrum with your observations.
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VI. Telescopes parameters

By defining the flux density per beam as Sν,b=K × Sν,tot (K being the correction
factor: Baars 1973) we get:

Sν,b =
2kT ′A
Aeff

(72)

where T′A is the antenna temperature, only corrected for atmospheric losses:

T ′A = TAexp(−τzA) (73)

where τz is the opacity at the zenith, and A is the air mass (1/sin(elevation)). It can
be converted into antenna temperature (T∗A), corrected for atmospheric attenuation,
the forward efficiency and the signal band gain:

T ′A = T ∗A × Feff (74)

where Feff is the forward efficiency. The main beam temperature is then the tem-
perature of an equivalent source just filling the main beam:

Tmb =
Feff
Beff

T ∗A =
T ′A
Beff

(75)

In equation 72, Aeff is the effective antenna area defined by the product between
the aperture efficiency ηA and the geometrical area of the aperture, Ageom=π(D/2)2

where D is the diameter of the telescope. ηA is the ratio of the strength of the signal
received from a point source to that which would have been received by a telescope
of the same diameter that had no losses or blockage, having uniform illumination,
and no surface errors.
Then equation 72 becomes:

Sν,b =
2kTmbBeff

ηAπ(D/2)2
(76)

in erg/s/cm2/Hz. Note that 1 Jansky = 10−23 erg s−1 cm−2 Hz−1.
To compare with flux in erg/s/cm2, we have to multiply this equation by ∆ν=∆v

× ν/c.

Flux(erg/s/cm2) =
2kTmbBeff

ηAπ(D/2)2
×∆v × ν

c
(77)

Which means that:

Tmb∆v = Flux(erg/s/cm2)× π(D/2)2

2k
× c

ν
× ηA
Beff

(78)
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Another way to compute it is using the Rayleigh-Jeans approximation:

Bν =
2ν2

c2
ΩkTmb (79)

Bν =
2k

λ3
Ω
∫
Tmbdv in erg/s/cm2 (80)

Then: ∫
Tmbdv = Flux(erg/s/cm2)× c3

ν3
× 1

2kΩ
(81)

For HIFI, with an effective aperture of 3.28 m:
1) telescope apperture efficiency = 64 % at 1.9 THz and 72 % at 500 GHz
leading to a conversion factor of 511 Jy per Kelvin (in T∗a) at 1.9 THz, and 454 Jy
per Kelvin (in T∗a) at 500 GHz.
2) telescope main beam efficiency = ∼ 90 %
leading to a conversion factor of 460 Jy per Kelvin (in Tmb) at 1.9 THz, and 408 Jy
per Kelvin (in Tmb) at 500 GHz..

CASSIS uses the concept of beam dilution. The beam filling factor (ff) is the
fraction of the telescope beam occupied by the source. The observed intensity is
reduced by the beam filling factor (Tmb = Tb × ff). A filling factor of unity means
that the source is much larger than the beam. For distant clouds or external galaxies
the filling factor is less so beam filling corrections are needed. For Gaussian source
and beam it can be expressed as:

ff =
Ωsource

Ωobserved

(82)

We assume for single dish observations, that the telescope beam FWHM size is
related to the diameter of the telescope by the diffraction limit:

θ = 1.22λ/D (83)

where θ is the angular resolution (radians), λ/ is the wavelength of light, and D
is the diameter of the telescope. The gaussian beam is frequently used in formula
deduction for single dish. The size of a gaussian beam is characterized by FWHM
of the power pattern: θb. Then solid angle of such a gaussian beam is:

Ωb =
∫
exp[−4ln2× θ2/θ2b ]× 2π × θd(θ) =

π

4× ln2
× θ2b = 1.133× θ2b (84)

Therefore, the filling factor can be expressed as:

ff =
θ2source

θ2source + θ2beam
(85)
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Figure 8 shows a sketch of a possible geometry: the background continuum
source fills part of the telescope beam (filling factor ηc); the clumpy foreground
source covers part of the continuum source (filling factor ηsc), and partly extends
over the beam area outside of the continuum source (filling factor ηsb). The observed
brightness temperature is then:

Tb = (1−ηcb)(Jν(Tcmb)+ηsb(1−e−τ )(Jν(Tex)−Jν(Tcmb)))+ηcb(Tc−ηsc(1−e−τ )(Jν(Tex)−Tc))
(86)

the first part of the equation being the emission outside the continuum and the
second part being the emission inside de continuum. Note that in CASSIS we do
not deal with the beam dilution of the continuum using the assumption that the
beam covers the continuum (ηcb=1). The equation is therefore equivalent with our
equation 32.

Telescope Beam

Continuum

Foreground Source

ỷcb

ηcb= filling factor of the continuum in the beam
ηsb= filling factor of the fraction of the source outside the continuum in the beam
ηsc= filling factor of the fraction of the source inside the continuum in the beam

ỷsc

ỷsb

Figure 8: Beam and source geometry.
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