Computation of the minimum \(\chi^{2}\) with the regular grid method

Description of the regular grid method

The regular grid method (RG) uses the minimum, the maximum and the step defined for each physical parameter defined in the components to set the corresponding grids of values.

\[[x^{11}_{min}, x^{11}_{min} + \theta^{11}, ..., x^{11}_{max} - \theta^{11}, x^{11}_{max}]\]\[...\]\[[x^{1n}_{min}, x^{1n}_{min} + \theta^{1n}, ..., x^{1n}_{max} - \theta^{1n}, x^{1n}_{max}]\]\[...\]\[[x^{mn}_{min}, x^{mn}_{min} + \theta^{mn}, ..., x^{mn}_{max} - \theta^{mn}, x^{mn}_{max}]\]

where \(x^{ij}\) and \(\theta^{ij}\) designate respectively the value and the step of the jth parameter of the ith component. The resulting models used in the computation are the cartesian products of these values of parameters.

computeChi2MinUsingRG

The computation of the minimum \(\chi^{2}\) with the regular grid method, you must provide the function computeChi2MinUsingRG with the components he/she wants to use.

Usage:

userInputs.computeChi2MinUsingRG(component1, component2, ...)

Examples

Example with one component:

userInputs.computeChi2MinUsingRG(component1)

Example with two components:

userInputs.computeChi2MinUsingRG(component1, component2)